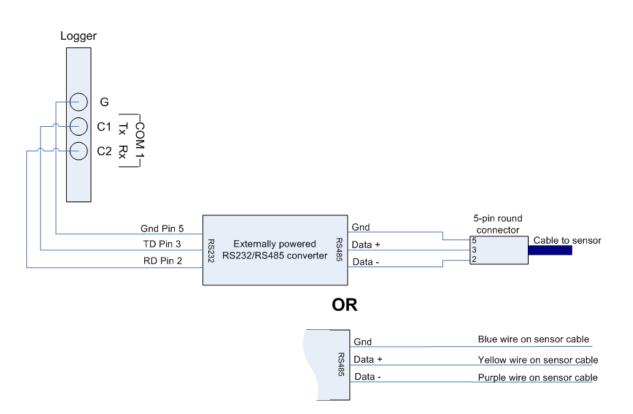
APPLICATION NOTE / SEPTEMBER 2010 / 9C0025r4

Introduction

Instrumentation Northwest now offers an easy-to-read Modbus[®] version for several of their popular AquiStar[®] Smart Sensors. These sensors communicate via Modbus RTU and directly return measurement readings, without any further math on the part of the host system.

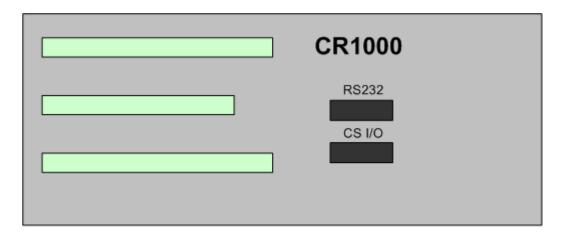

Currently, this feature is available on the PT2X Pressure/Temperature Sensor, the CT2X Conductivity/Temperature/Pressure Sensor, the T32 1Wire Temperature Logger, the GDL Datalogger, and the TempHion pH/ISE/Redox sensor.

The purpose of this document is to provide information on how to read INW's AquiStar[®] Smart Sensors with a Campbell datalogger via Modbus. Refer also to "Modbus Direct Read on AquiStar Smart Sensors" (Document # 9C0225) for information on available measurement units on the various sensors.

Wiring

On a CR1000, sensors can be connected using either the Com1, Com2, Com3, or Com4 ports or the RS232 port. Some loggers do not have an RS232 port. On these loggers, you will have to use the Com1, Com2, etc. ports.

Using the Com1, Com2, Com3, or Com4 Port



ENGINEERING DEPARTMENT 8902 122nd Avenue NE Kirkland, WA 98033 USA 425-822-4434 Fax 425-822-8384 / info@inwusa.com Page 1 of 10

APPLICATION NOTE / SEPTEMBER 2010 / 9C0025r4

Using the RS232 Port on a CR1000

For communication with Loggernet: CS I/O \rightarrow 5C23B Adapter \rightarrow PC Serial Port

For communication with CT2X: RS232 → Null Modem Adapter → Port Powered RS232/RS485 Adapter → Communication Cable → Smart Sensor

Taking Measurements

Modbus Function

Measurements can be read using Modbus function 03 - Read Holding Registers.

Data Format

The data is returned as a 32-bit IEEE floating-point value, high word first, also referred to as big-endian or float inverse.

Reading Registers

You can read single values by reading the register set for the desired value. For example, to read only conductivity in a linear format from a CT2X, you would read two registers starting at 62595.

You can also read any contiguous sets of registers by starting at the register for the first value you want to read and specifying how many registers to read (two per channel). For example, to read all channels on a standard GDL, you would read 14 registers starting at 62593.

ENGINEERING DEPARTMENT 8902 122nd Avenue NE Kirkland, WA 98033 USA 425-822-4434 Fax 425-822-8384 / info@inwusa.com Page 2 of 10

APPLICATION NOTE / SEPTEMBER 2010 / 9C0025r4

Register Addresses for PT2X, CT2X, TempHion, and T32

Sensor Type Firmware	9 PT2X 1.5	PT2X >= 2.1	CT2X >= 1.5	TempHion >= 1.1	T32 any
Register Address					
62593	Pressure	Temperature	Temperature	Temperature	Temperature - 1
62595	Temperature	Pressure	Conductivity - Linear	mV-1 (in mV)	Temperature - 2
62597			Conductivity - non-Linear	mV-2 (in mV)	Temperature - 3
62599			Pressure	mV-3 (in mV)	Temperature - 4
62601				mV-1 (in pH, ppm, or Eh)	Temperature - 5
62603				mV-2 (in pH, ppm, or Eh)	Temperature - 6
62605				mV-3 (in pH, ppm, or Eh)	Temperature - 7
62607					Temperature - 8
62609					Temperature - 9
62611					Temperature - 10
62613					Temperature - 11
62615					Temperature - 12
62617					Temperature - 13
62619					Temperature - 14
62621					Temperature - 15
62623					Temperature - 16
62625					Temperature - 17
62627					Temperature - 18
62629					Temperature - 19
62631					Temperature - 20
62633					Temperature - 21
62635					Temperature - 22
62637					Temperature - 23
62639					Temperature - 24
62641					Temperature - 25
62643					Temperature - 26
62645					Temperature - 27
62647					Temperature - 28
62649					Temperature - 29
62651					Temperature - 30
62653					Temperature - 31
62655					Temperature - 32

ENGINEERING DEPARTMENT 8902 122nd Avenue NE Kirkland, WA 98033 USA 425-822-4434 Fax 425-822-8384 / info@inwusa.com Page 3 of 10

APPLICATION NOTE / SEPTEMBER 2010 / 9C0025r4

Register Addresses for GDL

Sensor Type	GDL	GDL	GDL	GDL	GDL
Version	Standard	Dissolved Oxygen	Heart Rate Monito	r Rain Bucket	Generic Digital
Firmware	>= 2.5	>= 2.5	>= 2.5	>= 2.5	>= 2.5
Register					
Address					
62593	Temperature	Temperature	Temperature	Temperature	Temperature
62595	Temperature	Temperature	Temperature	Temperature	Temperature
62597	mV	mV	mV	mV	mV
62599	Voltage	Voltage	Voltage	Voltage	Voltage
62601	Voltage	Voltage	Voltage	Voltage	Voltage
62603	4-20 mA	4-20 mA	4-20 mA	4-20 mA	4-20 mA
62605	4-20 mA	4-20 mA	4-20 mA	4-20 mA	4-20 mA
62607		DO channel 1	Heart Rate	Rainfall	Custom Digital 1
62609		DO Temperature - 1			Custom Digital 2
62611		DO channel 2			Custom Digital 3
62613		DO Temperature - 2			Custom Digital 4
62615		DO channel 3			Custom Digital 5
62617		DO Temperature - 3			
62619		DO channel 4			
62621		DO Temperature - 4			

Sample Code

The following pages contain sample code. The first sample reads a contiguous set of channels from a PT2X. To change this sample to work with your sensor, you will need to assign your sensor address, the starting register, number of channels to read, and the output column headers. The code is marked where you need to make the changes.

The second sample reads two individual channels (linear conductivity and pressure) from a CT2X. To change this sample to work with your sensor, you will need to assign your sensor address, the starting registers, the final value array size, the number of output columns, the output column headers, and the number of reading sets. The code is marked where you need to make the changes

In both samples there is a subroutine called DecodeIEEEFloat. This code should not be changed. It is called after the reading has been taken to convert the two register readings into one 32-bit IEEE Float format number.

ENGINEERING DEPARTMENT 8902 122nd Avenue NE Kirkland, WA 98033 USA 425-822-4434 Fax 425-822-8384 / info@inwusa.com Page 4 of 10

APPLICATION NOTE / SEPTEMBER 2010 / 9C0025r4

Direct Read Sample Code – Range of Channels

'CR1000 Series Datalogger 'DirectRead_sample_range of channels.CR1 'Copyright Instrumentation Northwest, Inc. 2008 - 2010

'This program reads an INW Smart Sensor beginning with the first channel 'and reading two channels in a row

'This particular version reads a *PT2X* with firmware 2.1 or higher 'Temperature channel first and then the Pressure channel.

<pre>'*********** Constants and Variables ******* Const SNSR_ADDR = 3 Const TAKE_MEASUREMENT = 62593 Const NUM_CHANNELS = 2 Const NUM_REGISTERS = NUM_CHANNELS*2</pre>	**************************************	 Assign your sensor address, the starting register, and number of channels to read here.
Public Result Public sensor(NUM_REGISTERS) As Long Public values(NUM_CHANNELS)	' Array to hold values read ' Array to hold final values	
Public temperature As Float Public pressure As Float	' Temperature ' Pressure	
'************ Define DataTables here, as desired	****	
DataTable(Readings,True,-1) Sample(1,values(1),IEEE4) FieldNames("Temperature") Sample(1,values(2),IEEE4) FieldNames("Pressure") EndTable	'Column header for 1st channel 'Column header for 2nd channel	 Assign output column headers here.
 '******************************* Subroutine DecodeIEE ' This subroutine takes two 16-bit registers and decodes ' a single IEEE 32-bit floating point value. ' This subroutine is called after taking Modbus readings ' You should not modify this subroutine, just use as is. 	them into	****
Sub DecodeIEEEFloat (HW, LW, r)	*****	****
'Take 32-bit value comprising two words, high word firs 'and convert to IEEE 754 32-bit floating point 'Bit 31: sign bit 'Bits 30 - 23: exponent	st,	

ENGINEERING DEPARTMENT 8902 122nd Avenue NE Kirkland, WA 98033 USA 425-822-4434 Fax 425-822-8384 / info@inwusa.com

'Bits 22 - 0: mantisssa

Page 5 of 10

APPLICATION NOTE / SEPTEMBER 2010 / 9C0025r4

Dim man'mantissaDim ex'exponentDim sign'signDim a'interim valueDim b'interim valueDim c'interim value

'special case If HW = 0 AND LW = 0 Then r = 0Exit Sub End If

'Pull the 23 bit mantissa from the two separate words man = $LW + ((HW \text{ And } ((2 \land 7) - 1)) \ast 2 \land 16)$

Get exponent $a = 2 \land 7$ $b = (2 \land 8) - 1$

ex = (Int(HW / a)) And b

'Get sign 'sign = Int(HW / (2 ^ 16)) And (2 ^ 1 - 1) If HW < 0 Then sign = 1 Else sign = 0 End If

'Compute final value c = 1 + man / (2 ^ 23) r = ((-1) ^ sign) * c * (2 ^ (ex - 127))

End Sub

"*************************************
BeginProg
Dim i
·************************************
'******************* Scan Loop **********************************

ENGINEERING DEPARTMENT 8902 122nd Avenue NE Kirkland, WA 98033 USA 425-822-4434 Fax 425-822-8384 / info@inwusa.com Page 6 of 10

APPLICATION NOTE / SEPTEMBER 2010 / 9C0025r4

Scan (5,Sec,0,0)

'ModBusMaster (ResultCode, ComPort, BaudRate, ModBusAddr, Function, Variable, ' Start, Length, Tries, TimeOut)

'wake up the sensor and wait 1 second for it to warm up ModBusMaster (Result,ComRS232,38400,SNSR_ADDR,3,sensor(),TAKE_MEASUREMENT,NUM_REGISTERS,3,100) Delay (0,1,sec) 'take a measurement ModBusMaster (Result,ComRS232,38400,SNSR_ADDR,3,sensor(),TAKE_MEASUREMENT,NUM_REGISTERS,3,100)

' extract values, convert each set of two registers into one floating point value and put in values array
For i = 1 To NUM_REGISTERS step 2
DecodeIEEEFloat (sensor(i), sensor(i+1), values((i+1)/2))
No. 14

Next i

CallTable Readings

NextScan EndProg

Direct Read Sample Results – Range of Channels

TIMESTAMP	RECORD	Temperature	Pressure
9/23/2010 14:33	1	24.5625	178.7823
9/23/2010 14:34	2	24.75	178.7813
9/23/2010 14:34	3	24.75	178.7803

Direct Read Sample Code - Individual Channels

'CR1000 Series Datalogger 'DirectRead_sample_individual channels.CR1 'Copyright Instrumentation Northwest, Inc. 2008 - 2010

'This program reads two individual channels from an INW Smart Sensor

This particular version reads the Linear Conductivity value and the Pressure from a CT2X with firmware 1.5 or higher

'************* Constants and Variables ************************************					
Const $SNSR_ADDR = 1$	'Assign sensor address here!!!	A :			
Const TAKE_MEASUREMENT1 = 62595	' Modbus address for first reading	Assign your sensor			
	'(in this case conductivity (linear)	address and the starting			
		register for each channel			
Const TAKE_MEASUREMENT2 = 62599	' Modbus address for second reading	you want to read.			
	'(in this case pressure)				

ENGINEERING DEPARTMENT 8902 122nd Avenue NE Kirkland, WA 98033 USA 425-822-4434 Fax 425-822-8384 / info@inwusa.com Page 7 of 10

APPLICATION NOTE / SEPTEMBER 2010 / 9C0025r4

'Add further Consts as are needed for the number of individual channels you want to read.

Public Result Public reading(2) As Long Public values(2) <u>As Float</u>	' Array to hold values read each time a channel is rea ' Array to hold final values, one value per channel	d
'************* Define DataTables I	here, as desired ************************************	Make the size of this array equal to the number of channels you want to read.
DataTable(Readings,True,-1) Sample(1,values(1),IEEE4)		
FieldNames("Conductivity") Sample(1,values(2),IEEE4)	'Column header for 1st channel	Assign output column headers here, adding
FieldNames("Pressure") EndTable	'Column header for 2nd channel	Sample statements for each channel you want to read
'*************************************	tine DecodeIEEEFloat ************************************	****
' This subroutine takes two 16-bit registe ' a single IEEE 32-bit floating point valu ' This subroutine is called after taking M ' You should not modify this subroutine,	ie. Iodbus readings to decode the data.	
Sub DecodeIEEEFloat (HW, LW, r)	*****	* * * *
'Take 32-bit value comprising two word. 'and convert to IEEE 754 32-bit floating 'Bit 31: sign bit 'Bits 30 - 23: exponent 'Bits 22 - 0: mantisssa		
Dim man 'mantissa Dim ex 'exponent Dim sign 'sign Dim a 'interim value Dim b 'interim value Dim c 'interim value		
'special case If HW = 0 AND LW = 0 Then		
r = 0 Exit Sub End If		
'Pull the 23 bit mantissa from the two see man = LW + ((HW And ((2 ^ 7) - 1)) * 2		
'Get exponent $a = 2 \wedge 7$ $b = (2 \wedge 8) - 1$		
ex = (Int(HW / a)) And b		

ENGINEERING DEPARTMENT

1-800-PRO-WELL

WWW.INWUSA.COM

APPLICATION NOTE / SEPTEMBER 2010 / 9C0025r4

'Get sign $sign = Int(HW / (2 ^ 16)) And (2 ^ 1 - 1)$ If HW < 0 Then sign = 1Else sign = 0End If 'Compute final value $c = 1 + man / (2^{23})$ $r = ((-1)^{\circ} sign) * c * (2^{\circ} (ex - 127))$ End Sub BeginProg Dim i Scan (5,Sec,0,0) 'ModBusMaster (ResultCode, ComPort, BaudRate, ModBusAddr, Function, Variable, Start, Length, Tries, TimeOut) 'wake up the sensor and wait 1 second for it to warm up ModBusMaster (Result,ComRS232,38400,SNSR ADDR,3,reading(),TAKE MEASUREMENT1,2,3,100) Delay (0,1,sec)'Read first channel ModBusMaster (Result,ComRS232,38400,SNSR ADDR,3,reading(),TAKE MEASUREMENT1,2,3,100) ' extract values, convert set of two registers into one floating point value and put in values array DecodeIEEEFloat (reading(1), reading(2)), values(1)) 'Read second channel ModBusMaster (Result,ComRS232,38400,SNSR ADDR,3,reading(),TAKE MEASUREMENT2,2,3,100) ' extract values, convert set of two registers into one floating point value and put in values array DecodeIEEEFloat (reading(1), reading(2)), values(2)) 'Repeat for additional channels as needed Repeat the channel reading code for CallTable Readings each channel you want to read, changing the register address and NextScan values array location, as needed. EndProg

Page 9 of 10

APPLICATION NOTE / SEPTEMBER 2010 / 9C0025r4

Direct Read Sample Results - Individual Channels

TIMESTAMP	RECORD	Conductivity	Pressure
9/23/2010 15:05	0	5691.899	5.218782
9/23/2010 15:05	1	5691.899	5.218782
9/23/2010 15:05	2	5691.985	5.218782
9/23/2010 15:05	3	5692.812	5.218782

AquiStar is a registered trademark of Instrumentation Northwest, Inc. Modbus is a registered trademark of Schneider Electric.

ENGINEERING DEPARTMENT 8902 122nd Avenue NE Kirkland, WA 98033 USA 425-822-4434 Fax 425-822-8384 / info@inwusa.com Page 10 of 10

