AG90 Series
Electromagnetic Insertion Flow Meter

Precision Flow Measurement
An ONICON Brand
EX90-Series EX90-Series
Electromagnetic Insertion Electromagnetic Insertion
Flow Sensor Flow Sensor
AG90 Series AG90 Series
Electromagnetic Insertion Electromagnetic Insertion
Flow Meter Flow Meter

Free battery replacement at year four with warranty registration!

Certified Company
ISO 9001

Proudly Made in the USA

Lowest in the Irrigation Industry

Seametrics

5-Year Warranty

Seametrics
TABLE OF CONTENTS

General Information
- General Information ... Page 3
- Features .. Page 3
- Specifications ... Page 4
- Flow Rate .. Page 4
- Dimensions ... Page 5

Installation
- Chemical Injection or Fertigation ... Page 6
- Fitting Installation ... Page 6
- Meter Installation ... Page 6
- Saddle Installation ... Page 7
- Straight Pipe Recommendations .. Page 8
- Full Pipe Recommendations .. Page 9

Connections
- General Cable Information .. Page 10
- Cable Gland Opening and Sealing .. Page 10
- Cable Installation .. Page 10
- Wiring Diagrams .. Page 11
- Cable Wiring Table ... Page 11

Configuration
- Cable Shield .. Page 12
- Pulse Output .. Page 12

Operation
- Minimum Flow .. Page 13
- Filtering .. Page 13
- Electrode Coating .. Page 13
- Changing Flow Meter Settings - Standard Menu Options Page 13
- Changing Flow Meter Settings - Submenu Page 13
- Changing Flow Meter Settings - Home Screen and General Navigation .. Page 15
- To Change a Passcode ... Page 16
- Power Indicators .. Page 16
- Battery Powered Units ... Page 17

Troubleshooting & Error Messages
- Problem .. Page 18
- Probable Cause ... Page 18
- Things to Try ... Page 18
- Error Messages .. Page 19

Seametrics • 253.872.0284 seametrics.com
The AG90-series battery powered, insertion electromagnetic flow meter is designed for use with conductive fluids in 4”–12” pipe. The AG90’s stainless steel body allows the meter to operate in a wide range of temperatures, pressure, and corrosive or dirty environments.

The AG90 is highly suitable for difficult applications. With no moving parts, over-run conditions will not degrade the life of the AG90. It is resistant to wear from debris found in surface or ground water and there are no bearings to wear out or propellers to damage.

Rate and total units can be set via the front panel touch key pad by the user. Bidirectional flow is standard with totals available in forward, reverse, net, batch forward and batch reverse.

The AG90 is battery powered and an output cable is available for transmitting the pulse signal to remote devices. The AG90 includes a Seametrics saddle which has been designed to accommodate a wide range of pipe sizes and types while ensuring correct placement in the pipe. In addition, an optional internal data logger allows local storage of flow history.

Rate and total indicator with light sensor button controls

User access lid

Output cable port access

Equalization lug

O-ring, EPDM

PVDF electrode cap

Battery Powered

Bidirectional Flow Reading

Pulse Scaled Output

Built-in Data Logger (Optional)

Saddle Included

Quickly and easily change Total Volume Units, Flow Rate Units, Pulse Output Scaling, and many other settings using the two light sensor button controls on the display panel.
Specifications*

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Size</td>
<td>4” to 12”</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>Sensor Body</td>
<td>316 SS</td>
</tr>
<tr>
<td>Electrodes</td>
<td>Hastelloy</td>
</tr>
<tr>
<td>Housing</td>
<td>Powder-coated diecast aluminum</td>
</tr>
<tr>
<td>Electrode Cap</td>
<td>PVDF (Kynar®)</td>
</tr>
<tr>
<td>O-Ring</td>
<td>EPDM</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>10˚ to 140˚ F (-12˚ to 60˚ C)</td>
</tr>
<tr>
<td>Storage</td>
<td>-40˚ to 158˚ F (-40˚ to 70˚ C)</td>
</tr>
<tr>
<td>Fluid Temp.</td>
<td>32˚ to 200˚ F (0˚ to 93˚ C)</td>
</tr>
<tr>
<td>Pressure</td>
<td>200 psi (14 bar)</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>0.5 - 4.5 m/sec (1.64 - 14.8 ft/sec) (Low flow cutoff .15 m/sec; .49 ft/sec)</td>
</tr>
<tr>
<td>Calibration Accuracy</td>
<td></td>
</tr>
<tr>
<td>0.5 - 4.5 m/s (1.64-14.76 ft/sec)</td>
<td>+/- 2% of reading</td>
</tr>
<tr>
<td>0.3 - 0.5 m/sec (0.98 - 1.64 ft/sec)</td>
<td>+/- (2% of reading + 0.25% of full scale)</td>
</tr>
<tr>
<td>Display</td>
<td>128x64 dot-matrix LCD</td>
</tr>
<tr>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>Rate Volume Units</td>
<td>Rate Time Units</td>
</tr>
<tr>
<td>Gallons</td>
<td>Gallons x 10</td>
</tr>
<tr>
<td>Liters</td>
<td>Gallons x 100</td>
</tr>
<tr>
<td>Barrels (42 gallons)</td>
<td>Gallons x 1000</td>
</tr>
<tr>
<td>Cubic Feet</td>
<td>Million Gallons</td>
</tr>
<tr>
<td>Cubic Meters</td>
<td>Million Imperial Gallons</td>
</tr>
<tr>
<td>Million Gallons¹</td>
<td></td>
</tr>
<tr>
<td>Mega Liters¹</td>
<td></td>
</tr>
<tr>
<td>Imperial Gallons</td>
<td></td>
</tr>
<tr>
<td>Million Imperial Gallons¹</td>
<td></td>
</tr>
<tr>
<td>Bidirectional</td>
<td>Forward Total, Reverse Total, Net Total, Batch Forward, Batch Reverse</td>
</tr>
<tr>
<td>Power</td>
<td>One lithium 7.2V ‘D’ size battery pack, replaceable.</td>
</tr>
<tr>
<td>Scaled Pulse Output Signal</td>
<td>Current sinking pulse, isolated, 36 Vdc at 10 mA max</td>
</tr>
<tr>
<td>Pulse Rates</td>
<td>User-scalable from 0.1 to 99,999.9 volume units/pulse. Pulse width varies with output frequency, 150 pulses/sec max</td>
</tr>
<tr>
<td>Cable Optional Output Cable</td>
<td>20ft (6m) standard length polyurethane jacketed cable—for power and outputs. (Lengths up to 200’ (60 m) available.)</td>
</tr>
<tr>
<td>Conductivity</td>
<td>>20 microSiemens/cm</td>
</tr>
<tr>
<td>Empty Pipe Detection</td>
<td>Hardware/software, conductivity-based</td>
</tr>
<tr>
<td>Regulatory</td>
<td>CE (EN 61326) Pending</td>
</tr>
<tr>
<td>Environmental</td>
<td>IP67</td>
</tr>
</tbody>
</table>

* Specifications subject to change. Please consult our website for the most current data (seametrics.com).

¹ Rate Time Unit is available in Day only.

Kynar is a registered trademark of Arkema, Inc.

Flow Rate (4” - 12”)

<table>
<thead>
<tr>
<th>Nominal Pipe Size</th>
<th>4”</th>
<th>6”</th>
<th>8”</th>
<th>10”</th>
<th>12”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Flow Cutoff GPM</td>
<td>19.3</td>
<td>43.11</td>
<td>77.1</td>
<td>120.5</td>
<td>173.5</td>
</tr>
<tr>
<td>Low Flow Cutoff LPS</td>
<td>1.22</td>
<td>2.72</td>
<td>4.86</td>
<td>7.6</td>
<td>10.95</td>
</tr>
<tr>
<td>Min GPM</td>
<td>64.3</td>
<td>144.6</td>
<td>257</td>
<td>401.6</td>
<td>578.3</td>
</tr>
<tr>
<td>Min LPS</td>
<td>4.1</td>
<td>9.1</td>
<td>16.2</td>
<td>25.3</td>
<td>36.5</td>
</tr>
<tr>
<td>Max GPM</td>
<td>578</td>
<td>1301</td>
<td>2313</td>
<td>3614</td>
<td>5204</td>
</tr>
<tr>
<td>Max LPS</td>
<td>36.5</td>
<td>82.1</td>
<td>145.9</td>
<td>228</td>
<td>328.3</td>
</tr>
</tbody>
</table>

Upstream straight pipe is selected during initial setup. Upstream options are 5X or 10X the diameter and are based on the amount of straight pipe available in either new or propeller meter replacement installation. Downstream straight pipe requirement is 2X the diameter. See programming setup for details.
Dimensions

Install security clip and seal during installation if regulations require. Security seal wire threads through hole in security clip.

Install display security tab during installation if regulations require.

Install display security seal during installation if regulations require.

CAUTION: Ensure that the U-clip is installed and never remove the U-clip retainer when the pipe is under pressure. Always remove pressure from the pipe before you attempt to remove the meter. Removal under pressure may result in damage or serious injury.
Fitting Installation

AG90-Series meters require special saddles that ensure that the flow sensor is installed to the correct depth. The saddle must be installed in the pipeline before the meter can be installed. For best results, see straight pipe and full pipe information on pages 8 and 9.

If there is not enough straight run to smooth out the turbulence caused by valves, fittings, and changes in direction, some decrease in accuracy may result. This does not mean that the flow meter’s reading is meaningless however. In some applications (control systems, valve operation, chemical addition) a repeatable reading may be more important than a highly accurate one.

Orienting the Meter

Side (3 o’clock), top (12 o’clock) installations are acceptable.

Upstream straight pipe is selected during initial setup. Upstream options are 5X or 10X the diameter and are based on the amount of straight pipe available in either new or propeller meter replacement installation. Downstream straight pipe requirement is 2X the diameter. See programming setup for details.

Flow Straightening Vanes/Conditioners

1. If you have the bolt-in, 3-vane style they may be removed or left in place. They do not affect performance.

2. If you have the 6-vane, bolt-in style with a cone, it should be removed.

3. For 6-vane, weld-in style installed in a spool, turn the spool 180° and reinstall with the vanes behind the meter.

4. Orifice, tube or Vortab style conditioners will not affect performance.

Chemical Injection or Fertigation

When any magmeter, by any manufacturer, is used in a chemical injection application (including fertigation), the chemical injection point must be placed downstream of the magmeter OR far enough upstream for complete mixing to occur before the fluid reaches the meter. When unmixed chemical or fertilizer alternates with water passing through the meter, the rapid changes in conductivity may cause sudden spikes and drops in the meter’s reading, resulting in inaccurate measurement. The magmeter will restabilize, however, with a steady flow of fluid of uniform conductivity.

Caution: In chemical injection or fertigation applications, install chemical injection point downstream of magmeter, or far enough upstream to allow complete mixing of fluids before the meter.
New Installation

BEFORE INSTALLING measure & record inside diameter (ID) of pipe.

1. Clean the mounting surface, removing any roughness from the area and cut a 1.75' hole into pipe. Place gasket centered over pipe opening.

2. Place saddle top over gasket.

3. Make sure saddle top covers entire gasket.

4. Place the saddle clamps under the pipe and align with the clamp guides on the saddle top.

5. Place saddle plates over saddle clamp threads. Attach nuts and tighten as shown below. Torque to 75 ft-lb in cross pattern.

6. Insert the EX90 sensor into the saddle fitting and secure with mounting clip or attach security clip and seals if required.

Propeller Replacement Installation

BEFORE INSTALLING measure & record inside diameter (ID) of pipe.

1. Clean the mounting surface, removing any roughness which would prevent the gasket from sealing. Place gasket centered over pipe opening.

2. Place saddle top over gasket.

3. Make sure saddle top covers entire gasket.

4. Place the saddle clamps under the pipe and align with the clamp guides on the saddle top.

5. Place saddle plates over saddle clamp threads. Attach nuts and tighten as shown below. Torque to 75 ft-lb in cross pattern.

6. Insert the AG90 sensor into the saddle fitting and secure with mounting clip or attach security clip and seals if required.
Grounding

Electronically Noisy Installations. When the AG90 is installed in an electrically noisy system (near a VFD etc.), grounding is recommended. Where lightning is a threat, or in severe electrical environments, an optional connection to a nearby equipment ground or ground rod is advisable.

Straight Pipe Recommendations \((X = \text{diameter})\)

Upstream straight pipe is selected during initial setup. Upstream options are 5X or 10X the diameter and are based on the amount of straight pipe available in either new or propeller meter replacement installation. Downstream straight pipe requirement is 2X the diameter. See programming setup for details.

Full Pipe Recommendations

Possible Problem

Better Installation

Can create air pocket at sensor

Allows air to bleed off
Full Pipe Recommendations

Possible Problem

- Air can be trapped
- Post-valve cavitation can create air pocket
- Air can be trapped

Better Installation

- Allows air to bleed off
- Ensures full pipe
- Keeps pipe full at sensor
AG90- SERIES INSTRUCTIONS

CONNECTIONS

AG90 General Cable Information

In the AG90 meter, there are two output cable ports. Either port can be used. The cable contains the wires for scaled pulse output and external DC power. See Sample Cable Wiring Diagrams and Wiring Table.

The AG90 is available as a Battery powered meter

AG90 Cable Installation (Wiring)

Battery Version with external pulse output.

1. Unscrew the display lid and remove it.
2. Remove the display assembly from the meter exposing the internal connectors. Be sure NOT to undo any connections to the display assembly as you remove it.
3. There is a two 2-pin connector already installed.
4. Remove the plug and o-ring from the cable port(s) where you want to insert the cable.
5. Install cable gland(s) using Teflon pipe sealant, or tape, and insert cable end(s).
6. Strip cable jacket and conductors and install the wires into the connectors in their respective locations. (See Cable Wiring Table for details.)
7. Plug the battery cable into the circuit board, as shown:

Battery version with two 2-pin connectors

8. Secure the cables inside the internal strain relief clip and tighten the cable gland sealing nut securely. (torque nut to 22 in-lbs.). A loose nut could cause moisture ingress and compromise the meter head’s IP67 rating, voiding the warranty.
9. Remount the display assembly, being careful to not pinch any wires.
10. Reinstall the display lid, being sure to avoid cross-threading. Ensure the lid is screwed down fully to prevent water ingress.

Battery Version with no external pulse output

No wiring is needed.

Cable Gland Opening and Sealing

WARNING: Improper sealing of glands or cables will invalidate any warranty. If plugs or cable glands are removed, reinstall using Teflon pipe sealant, or tape, to ensure maximum moisture protection.

Remove plug & o-ring. Insert cable gland/strain relief. Feed cable through cable gland.

Clamp cable with strain relief clips. Attach drain wire lug to bracket post.

CRITICAL! Torque cable gland sealing nut to 22 in-lbs.
CONNECTIONS

AG90 Wiring Diagrams

Unscrew the display lid and remove it from the meter. Unsnap the display assembly and remove it from the meter exposing the internal wiring connector. Install the wires through the cable glands into the 2 pin screw connector.

(C1 = power/output cable)

With Pulse Output Only

Pulse with External DC Power Source

9 - 36 VDC at 250mA max, 30mA average

If not using external output, no wiring is required.

Connecting External Power

If anything is disconnected *(follow sequence)*:

1. Connect ribbon cable to transmitter board
2. Connect 4-pin to transmitter board
 (red to far left receptacle - labeled 1)
3. Connect any option boards
4. Connect battery
5. Connect external power connector to 15 pin/2pin

If everything is connected:

1. Leave all connections plugged in
 (Ribbon cable, Battery, 4 pin, Option boards, etc.)
2. Connect External power connector to 15 pin/2pin

AG90 Cable Wiring Table

<table>
<thead>
<tr>
<th>PIN Description</th>
<th>PIN</th>
<th>1 PULSE SCLD -</th>
<th>2 PULSE SCLD +</th>
<th>PWR</th>
<th>PWR +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Powered Meter</td>
<td></td>
<td>WHITE C1</td>
<td>GREEN C1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Externally Powered Meter</td>
<td></td>
<td>WHITE C1</td>
<td>GREEN C1</td>
<td>BLACK C1</td>
<td>RED C1</td>
</tr>
</tbody>
</table>

(C1 = Power/Output Cable 1)

WARNING! Ribbon cable must be connected to the upper transmitter board before power is applied.

External Power (if used)

Battery Power

Ribbon Cable

Must be attached BEFORE applying power

Seametrics • 253.872.0284 Page 11 seametrics.com
Cable Shield. In general, the cable shield and its bare drain wire should be left unconnected at the user equipment end of the cable to minimize "ground loop" problems.

Pulse Output Configuration. A pulse output is standard on all models. Since this is an isolated output, the external equipment must include a DC power source to regenerate the pulse from the open-collector output (transistor equivalent of a contact closure). A pull-up or pull-down resistor may be needed if not included in the user equipment. Both the power source and resistor may be supplied internally in some types of control and monitoring devices. If not, as for most PLC discrete input modules, they must be added externally at the module input terminals. The pulse output rate in volume units/pulse can be set by the user via the SETP tab on the meter’s setup menus.

Because the pulse output of an AG90 meter is set by the user, care must be taken to assure the output pulses do not exceed the maximum frequency of the meter while also ensuring a reasonable resolution.

K-factor: Remember that SETP is expressed in units totaled per output pulse (G/P if using gallons) while K-factors are expressed in pulses per gallon (P/G.) To determine K-factor from SETP, divide 1 by SETP (if SETP is expressed in gallons.) Conversely, 1 divided by the K-factor equals SETP

AG90 battery powered units have a maximum output frequency of 150 Hz.

Because all pulse outputs (SETP) are configured in (rate) units totaled per pulse, all sizes of meters can be configured with the same SETP values.

For example, if your rate is chosen as gallons per minute (GPM) the table below applies. If your rate is different, simply use your rate label in place of (GPM.) The numerical values will remain the same.

<table>
<thead>
<tr>
<th>SETP</th>
<th>Flow Rate at 1 Hz (GPM)</th>
<th>Flow Rate at 150 Hz Battery Powered Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>6</td>
<td>900</td>
</tr>
<tr>
<td>0.2</td>
<td>12</td>
<td>1800</td>
</tr>
<tr>
<td>0.3</td>
<td>18</td>
<td>2700</td>
</tr>
<tr>
<td>0.4</td>
<td>24</td>
<td>3600</td>
</tr>
<tr>
<td>0.5</td>
<td>30</td>
<td>4500</td>
</tr>
<tr>
<td>0.6</td>
<td>36</td>
<td>5400</td>
</tr>
<tr>
<td>0.7</td>
<td>42</td>
<td>6300</td>
</tr>
<tr>
<td>0.8</td>
<td>48</td>
<td>7200</td>
</tr>
<tr>
<td>0.9</td>
<td>54</td>
<td>8100</td>
</tr>
<tr>
<td>1.0</td>
<td>60</td>
<td>9000</td>
</tr>
</tbody>
</table>

Lower frequency output pulses (1 pulse for some particular number of gallons) can also be set.

Any output frequency can be determined by:

Rate (units/minute) ÷ SETP (units/pulse) = pulse/minute Hz = pulse/minute ÷ 60 seconds / minutes

Pulse Units. The units of measure of SETP are independently selectable and are not tied to rate or total. Upon change of the SETP unit, the pulse output may take up to 10 seconds, or the duration of one pulse (whichever is longer) to take effect.

If Pulse Output is Inconsistent. The DAMP filter may need to be increased.

Pulse Width Timing. The unit and value of SETP must be chosen to keep the duration between meter pulse outputs to less than 500 seconds.

Pulse Timing in Battery Powered Units. The output pulse width in battery powered units is short and varies with pulse frequency. (See table)

```
<table>
<thead>
<tr>
<th>Output Pulse Frequency</th>
<th>Output Pulse Width as a Percentage of the Pulse Period (Pulse period = 1000 milliseconds/frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero to 1 Hz</td>
<td>Multiply the pulse period by 0.01</td>
</tr>
<tr>
<td>&gt;1 to 20 Hz</td>
<td>Multiply the pulse period by 0.05</td>
</tr>
<tr>
<td>&gt;20 to 100 Hz</td>
<td>Multiply the pulse period by 0.1</td>
</tr>
<tr>
<td>&gt;100 to 150 Hz</td>
<td>Multiply the pulse period by 0.15</td>
</tr>
</tbody>
</table>
```

Example: If frequency = 20 Hz then the pulse period = 50 milliseconds and pulse width = (.05 x 50 milliseconds) = 2.5 ms
Minimum Flow

As with any other flow sensor, there is a rate below which the AG90-Series sensor cannot read. Check the table below (also on page 4) for the minimum flow rate detectable by the sensor for a given pipe size.

<table>
<thead>
<tr>
<th>Nominal Pipe Size</th>
<th>4”</th>
<th>6”</th>
<th>8”</th>
<th>10”</th>
<th>12”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Flow Cutoff GPM</td>
<td>19.3</td>
<td>43.11</td>
<td>77.1</td>
<td>120.5</td>
<td>173.5</td>
</tr>
<tr>
<td>Low Flow Cutoff LPS</td>
<td>1.22</td>
<td>2.72</td>
<td>4.86</td>
<td>7.6</td>
<td>10.95</td>
</tr>
<tr>
<td>Min GPM</td>
<td>64.3</td>
<td>144.6</td>
<td>257</td>
<td>401.6</td>
<td>578.3</td>
</tr>
<tr>
<td>Min LPS</td>
<td>4.1</td>
<td>9.1</td>
<td>16.2</td>
<td>25.3</td>
<td>36.5</td>
</tr>
<tr>
<td>Max GPM</td>
<td>578</td>
<td>1301</td>
<td>2313</td>
<td>3614</td>
<td>5204</td>
</tr>
<tr>
<td>Max LPS</td>
<td>36.5</td>
<td>82.1</td>
<td>145.9</td>
<td>228</td>
<td>328.3</td>
</tr>
</tbody>
</table>

Filtering

The software of the AG90-Series filters out electrical noise and averages sudden variations in the flow to smooth the output. It takes a matter of seconds for the flow sensor to get up to full output after flow begins.

Electrode Coating

Grease or other adhering, non-conductive materials can stop flow detection if the electrodes become heavily coated. To clean the electrodes, remove the sensor from the pipe and gently wipe off the electrodes (three silver bumps) on the reading face of the flow sensor. A mild soap (dish washing liquid for example) can be used to aid the cleaning process.

Standard Menu Options

T UNIT

View or change TOTAL volume units

R UNIT

View or change flow RATE units

SET P

View or change pulse output scaling

DAMP

View or change # of sample periods for rolling average.*

(0=1 sample period, 1=2 sample periods, etc.)

* See DAMP Settings for Battery Units on page 16.

Special SUBMENU for Further Options

The EXIT tab in the MAIN MENU has a second function. If, instead of using the hold and tap sequence to return to the HOME screen, you tap 5 five times, you will be redirected to a SUBMENU screen from which you can access several more options.

Navigation in this SUBMENU is the same as for the MAIN MENU. Whenever you wish, go to the EXIT tab in the SUBMENU and perform the hold and tap sequence to return to the MAIN MENU.

INFO: Meter model number, serial number, and firmware version.

SAMP: Sample rate.

SETUP: View or change pipe settings.

EXIT: Return to MAIN MENU.
INITIAL SETUP OF ID, HOLE, AND PIPE IS REQUIRED FOR THE METER TO OPERATE PROPERLY.

When you remove the meter from the box, it will prompt you to perform initial SETUP of ID, Hole and PIPE before you can proceed to other menu functions or return to the HOME screen.

SETUP Menu Functionality

The SETUP menu works slightly different than other menus inside the AG90. The black square highlighting the left most text is similar to a cursor on a computer. It lets you know where you are within the menu. Press Up 1x and the menu category will change. The categories are as follows:

ID (Internal Diameter in inches)
HOLE (Hole Size Cut into Pipe for Inserting Meter)
PIPE (Piping Configuration Selection)

ID

The Internal Diameter (or I.D.) of the Pipe in which the AG90 is installed is critical to the meter’s performance. The AG90 senses a local velocity around the electrodes and uses that information to extrapolate the flow over the entire pipe section. The ID is also used ‘under the hood’ to scale many critical values such as Low Flow Cutoff, Max Flow Rate, etc. The installer should measure the ID in the most accurate way possible prior to saddle installation.

HOLE

You must change setting from the default N/A to one of the following:

SMALL

New Installations will cut a 1.75” hole into the pipe. This is considered a “SMALL” hole. In this type of installation, the meter has significant room between it and the hole cut into the pipe. When water flows by the meter, it fills this extra cross sectional area while flowing past the measurement point. This means that unlike the “SMALL” hole case, the cross sectional area at the point of measurement is not equal to the I.D. of the pipe. When this menu is selected, the AG90 will compensate for this condition.

LARGE

Retrofit installations already have a hole cut into the pipe. Typically they are quite large (especially when replacing mechanical meters), although the exact size depends on the pipe size. These are considered “LARGE” holes. In this type of installation, the meter has significant room between it and the hole cut into the pipe. When water flows by the meter, it fills this extra cross sectional area while flowing past the measurement point. This means that unlike the “SMALL” hole case, the cross sectional area at the point of measurement is not equal to the I.D. of the pipe. When this menu is selected, the AG90 will compensate for this condition.

PIPE

The PIPE menu is used to compensate for altered velocity profiles in various piping configurations. When obstructions or disturbances are introduced to straight pipe (particularly upstream of the meter), the velocity profile changes shape. Since the AG90 measures a relatively small cross section of the velocity profile, large distortions of this profile can lead directly to measurement error. The pipe menu has distinct pipe configuration compensation built into the AG90 allowing you to select the closest condition to your actual pipe and allows the AG90 to operate at peak performance.

You must change setting from the default N/A to one of the following:

STRAIGHT

Straight Pipe is a relative term. For this configuration, the AG90 considers the pipe to be straight if there are 20+ diameters of straight pipe upstream from the meter and at least 2 diameters downstream from the meter from any obstruction in the pipe.

10/2 ELB

This selection represents an install condition in which there exists a single in plane elbow 10 diameters upstream from the meter and 2 diameters downstream from the meter.

5/2 ELB

This selection represents an install condition in which there exists a single in plane elbow 5 diameters upstream from the meter and 2 diameters downstream from the meter.

ADJ

The adjustment menu is for installers and regulating bodies. This menu allows manual adjustment of the rate (on a % of reading basis) in installations outside of the scope of this document. This menu should be used when a known reference is temporarily (or otherwise) installed into the system and adjustment can be made with high confidence and reliability.
Changing Flow Meter Settings

Home Screen and General Navigation

The HOME Screen displays flow volume, direction of the flow total and flow RATE along with status conditions such as Empty Pipe. Two buttons below the LCD display are used to access menu screens for viewing and changing meter setup parameters.

These two buttons are light sensors which can detect when a finger is covering them and operate upon release. Only three button touch actions are needed to control navigation through the menus, settings changes and back to the home screen.

HORIZONTAL SCROLLING:
Tap right button to scroll horizontally through menu tabs or move horizontally within a tab dialog when applicable.

VERTICAL SCROLLING:
Tap left button to change a highlighted item within a tab dialog.

SELECT/ENTER/EXIT:
Hold left button while tapping right button once to enter or exit a tab dialog or to navigate between the HOME and other menu screens.

Changing Total Direction/Resetting Totalizers

On the Main screen, tap ▼ to select the direction of the total display. To reset BATCH FWD or BATCH REV, select with ▼ and then tap ▼ four times.

To Enter the Menu System perform the hold and tap sequence. The Passcode entry screen will display. The default passcode is 000000. If a different passcode has previously been set, use the ▼ and ▼ to enter that passcode. In either case, hold and tap again to move into the menu system. (If you enter the wrong passcode, hold and tap again to return to the previous screen. See page 16 for information on how to change a passcode.)

Making Selections

Once in the Menu System, move from tab to tab by tapping the right button. (See the next page for details on the various available tabs.)

Select the Parameter. In the screen for the highlighted tab you will see the current parameter value for that tab. Tapping the right button, move to the tab for the parameter you want to change.

In this example, the first line indicates that the current unit for the TOTAL is GALLONS. The next two lines tell you what to do next.

If you would like to change the TOTAL units, just perform the hold and tap sequence to bring up a screen to change the setting.

Scroll Through Setting. Select the new setting by scrolling through a list of selections by tapping the left button to find a different TOTAL unit.

Accept Changes. To accept any changes you have made, perform the hold and tap sequence.

When Finished Making Changes. When you are finished making changes, move to the EXIT tab using the right button.

To return to the HOME screen, perform the hold and tap sequence.
Programming Passcode and Tamper Prevention

To prevent tampering or changes to the program, after initial set-up, either enter a security pass-code, or remove the display lid and place a security tab over one of the arrows before installing the housing security seal.

Placing a security tab over either display button will prevent additional changes to the program, while allowing someone to wake the display from sleep mode. Placement over the right button will also allow scrolling through the flow direction feature. Placement over the left button will prevent changes to the flow direction. In either position, non-resettable totals will not be affected.

The AG90 has a passcode system for restricting access to the menus. The AG90 comes from the factory with the passcode set to 000000. When a user attempts to enter the menu system (see details on page 14), the passcode entry screen will be displayed.

The default passcode is 00000. If a different passcode has previously been set, then the user must enter that passcode at this time. After entering the passcode, or leaving it at 00000 if using the default passcode, the user does the hold and tap sequence to move into the menu system.

To change the passcode, you must use the THIRD MENU screen. Access the THIRD MENU screen as follows:

- Enter the main menu system, as described above.

On the main menu, tab over to the EXIT tab and tap the up arrow five times. A SUBMENU screen will display.

- On the SUBMENU screen tab over to the EXIT tab and tap the up arrow five times. The THIRD MENU screen will display.

- To set the code, hold and tap SETCD and then use the ▲ and ▼ to enter the new code.

- Hold and tap again to return to the THIRD MENU screen.
- Tab to EXIT, and then hold and tap to return to the SUBMENU.

To change the number of decimal places in the total

- To set the decimal point, hold and tap on SETD and then use the ▼ to move the decimal point.
- Hold and tap again to return to the THIRD MENU screen.
- Tab to EXIT, and then hold and tap to return to the SUBMENU.

Power Indicators

A power indicator is displayed in the lower left of the main display window.

When powered by battery a battery icon will display.

OK on the battery indicator means battery voltage is above 6.4 volts.

LO on the battery indicator means the battery is low and should be replaced soon.

PLMIN

PLMIN is a measure of stability within the filter. Its setting is in terms of a percentage subtracted from 100. When PLMIN = 0, the DAMP filter will be applied regardless of changing flow rates. No amount of flow rate changes seen by the meter will restart the DAMP filter.

When PLMIN is ≠ 0, PLMIN is subtracted from 100. The resulting percentage is used as a DAMP filter restart condition. When this condition is met, the DAMP filter will be emptied and restarted with fresh data. For instance, when PLMIN = 25: 100-25=75%. This means that any reading that differs from its predecessor by 75% or more (in either the positive or negative direction), will trigger the DAMP filter reset condition. If PLMIN = 5, the DAMP filter will only reset when a value is ±95% different than its predecessor.

It is very important to note that PLMIN settings should vary based upon flow conditions at the install site. If the DAMP filter is being used to smooth out known varying flow conditions (pulsating or highly turbulent flows), too high of a PLMIN value can exacerbate unstable flow conditions. When flow conditions are such, a value of PLMIN = 0 is suggested. Note however, that upon startup and shutdown, this will affect flow rate values responsiveness.
TEST

TEST allows the user to initiate a fully functional, artificial flow rate for the purpose of testing other connected equipment. When TEST is applied, all features of the meter will function at the stated flow rate (in gallons per second).

For TEST to function, the meter must be in water (not EMPTY PIPE), a rate must be entered and the feature must be turned ON.

After use, the TEST feature must be turned OFF. If the TEST feature is not turned OFF, the stated static flow rate (in gallons per second) will be shown any time the meter is full or in a flowing condition.

Battery Powered Units

To ‘wake up’ a battery powered meter, you may need to hold the up arrow for 2 seconds and release.

The AG90 meter comes configured with a 7.2V ‘D’ size lithium battery pack. In this configuration, the only option/output is the scaled pulse output which comes standard. Be sure to set your SETP value such that the meter will function properly over the flow range in your application (see page 12 for details). The sample rate of the meter is user selectable through the SAMP tab in the meter’s sub-menu. Sample periods of 1/5, 1/3, 1, 3, 5, 15, 30, and 60 seconds can be selected. (A sample period of 5 seconds - 4 year battery life - is the default.)

Larger sample periods will yield longer battery life but slower response time. Care must be taken to select a sample period that is suitable for your application. See the table below for the expected battery life as a function of sample period.

DAMP/Filtering

The DAMP Filter allows multiple readings to be averaged over time, thus reducing the meters sensitivity to minor changes in flow rate. The DAMP Filter is extremely useful for situations where the flow is not perfectly steady (pulsating flows, turbulent flows, etc.)

The DAMP Filter works differently depending on the SAMP selection:

SAMP < 1 second

When the SAMP setting is less than 1 second, the DAMP filter is defined on a “per second” basis. The DAMP filter always utilizes at least 1 second of data for its filter. Then, it adds however many seconds you’ve selected in the DAMP menu setting to that 1 second of data. For instance, if you set the DAMP menu to 7, your AG90 meter will utilize 7+1=8 seconds of data within the filter. This means that the filter will average readings for 8 seconds prior to displaying a reading. After the first reading is displayed, the filter kicks out the oldest 1 second of data, adds the newest 1 second of data, recomputes the average flow rate, and displays it to the screen/output. In this way, it is considered a “running average”.

SAMP > 1 second

When the SAMP menu is set to a number greater than 1 second, the DAMP menu is defined on a “per reading” basis. Again, the DAMP filter must always use at least 1 reading to generate a flow rate, so the filter will add 1 to your selection. For instance, if SAMP is set to 15, and DAMP is set to 7, the DAMP filter will utilize 7+1=8 readings worth of data for the filter. This means that the filter will not be full for 15x8=120 seconds. Note that in most long term applications, these long filters may be fine, but in shorter term applications, the DAMP and SAMP menus need to be adjusted accordingly.

Battery Life/Sample Period

<table>
<thead>
<tr>
<th>Sensor sample period(s) (Seconds)</th>
<th>Expected battery life*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5 (0.2)</td>
<td>4.5 Months</td>
</tr>
<tr>
<td>1/3 (0.33)</td>
<td>7 Months</td>
</tr>
<tr>
<td>1</td>
<td>1.5 years</td>
</tr>
<tr>
<td>3</td>
<td>3.25 years</td>
</tr>
<tr>
<td>5</td>
<td>4 years</td>
</tr>
<tr>
<td>15</td>
<td>5.5 years</td>
</tr>
<tr>
<td>30</td>
<td>6 years</td>
</tr>
<tr>
<td>60</td>
<td>6.25 years</td>
</tr>
</tbody>
</table>

*Based on 85% battery capacity at room temperature.
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Causes</th>
<th>Things to try…</th>
</tr>
</thead>
</table>
| Blank Display | Battery has not been plugged in
Dead battery | Plug in the battery |
| | Birth battery | Replace battery |
| Flow rate reading fluctuates excessively when flow is unchanging | Excessively turbulent or unsteady flow due to partially closed valves or other flow obstructions
Pipe not full
Pulsing flow due to combining multiple upstream flow sources
Insufficient mixing of upstream chemicals
Low fluid conductivity < 20 µS/cm
Noisy electrical environment
• Shared grounds
• Too close to VFD
• Faulty or poor power supply
• Cable length
• Shared conduit
• Unshielded cable | Eliminate or minimize causes of flow disturbances or increase meter damping
Provide back pressure or other means to ensure pipe is filled
Move connection point further upstream
Move chemical injection downstream from meter
Replace with different type of meter
Improve grounding at meter and nearby potentially noisy electrical equipment. Increase distance between meter and electrical noise sources.
Try power reset |
| Flow Rate appears correct but pulse/ frequency output is low, erratic or absent | External device input impedance too low
Cable too long | Use sourcing rather than sinking interface connection
Reduce interface pull-up resistance |
| Flow Rate appears correct but pulse/frequency output is erratic and/or too high | Electrical noise sources interfering with pulse frequency signal
Wrong type of cable
Grounding problem | Isolate, remove or reduce noise sources. Move meter control cable away from noise sources.
Use only twisted pair cable and ensure both signal wires are on same twisted pair
Improve or try different grounding method |
| Flow rate steadily reads zero when there is flow | Pipe ID not set
Flow is below cutoff (very low)
Air in the pipe | Program ID of pipe |
| | | Reading will resume when flow increases |
| | | Reposition meter for full pipe |
| Flow rate intermittently drops when there is flow | Air in the pipe | Reposition meter for full pipe |
| Jumpy reading | Improperly grounded
Pulsing flow | Check for proper grounding |
| | | Increase DAMP value |
| | | Use external power source (allows more flow averaging) |
| | | Try power reset |
Error Messages

Under certain conditions an error message may be displayed.

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>Initialization is occurring during power up.</td>
<td></td>
</tr>
<tr>
<td>EMPTY PIPE</td>
<td>Fluid is not detected between the sensing electrodes.</td>
<td></td>
</tr>
<tr>
<td>LO in battery icon</td>
<td>Battery is getting low, replace soon. Meter still functions.</td>
<td>Above 6.4V, OK appears in icon</td>
</tr>
<tr>
<td>BATT END</td>
<td>Battery is very low (approx. 6.1V). Totalizer stops updating.</td>
<td></td>
</tr>
<tr>
<td>COIL FAIL</td>
<td>Coil current too high or too low (short or open).</td>
<td></td>
</tr>
<tr>
<td>COMM FAIL</td>
<td>Communication between transmitter and sensor board fails.</td>
<td></td>
</tr>
<tr>
<td>OVER RANGE</td>
<td>Rate exceeds number of digits that can be displayed. Adjust units.</td>
<td></td>
</tr>
<tr>
<td>SET ID</td>
<td>Pipe ID has not been set.</td>
<td></td>
</tr>
<tr>
<td>SET HOLE</td>
<td>Installation hole type (small, large) has not been set.</td>
<td></td>
</tr>
<tr>
<td>SET PIPE</td>
<td>Pipe setting has not been selected.</td>
<td></td>
</tr>
<tr>
<td>INIT FAIL</td>
<td>Initialization has failed. Ribbon cable plugged in AFTER power, or there is no communication between transmitter & sensor board.</td>
<td>Try power reset</td>
</tr>
<tr>
<td>BAD TEMP</td>
<td>Temperature sensor failed.</td>
<td></td>
</tr>
</tbody>
</table>
SEAMETRICS LIMITED WARRANTY

The limited warranty set forth below is given by Seametrics, with respect to Seametrics brand products purchased in the United States of America. Seametrics warrants that products manufactured by Seametrics, when delivered to you in new condition in their original containers and properly installed, shall be free from defects in material and workmanship. **Seametrics products are warranted against defects for a minimum period of two (2) years from date of installation, unless otherwise specified, with proof of install date. If no proof of install date can be provided, warranty period will be two (2) years from date of shipment from Seametrics, as defined on Seametrics’ invoice.** Seametrics’ obligation under this warranty shall be limited to replacing or repairing the part or parts, or, at Seametrics’ option, the products, which prove defective in material or workmanship. The following are the terms of Seametrics’ limited warranty:

a. Buyer must give Seametrics prompt notice of any defect or failure and satisfactory proof thereof.
b. Any defective part or parts must be returned to Seametrics’ factory or to an authorized service center for inspection.
c. Buyer will prepay all freight charges to return any products to Seametrics’ factory, or another repair facility, as designated by Seametrics.
d. Defective products, or parts thereof, which are returned to Seametrics and proved to be defective upon inspection, will be repaired to factory specifications.
e. Seametrics will deliver repaired products or replacements for defective products to the buyer (ground freight prepaid) to the destination provided in the original order.
f. Products returned to Seametrics for which Seametrics provides replacement under this warranty shall become the property of Seametrics.
g. This limited warranty covers all defects encountered in normal use of Seametrics products, and does not apply to the following cases:
 i. Loss of or damage to Seametrics product due to abuse, mishandling, or improper packaging by buyer
 ii. Failure to follow operating, maintenance, or environmental instructions prescribed in Seametrics’ instruction manual
 iii. Products not used for their intended purpose
 iv. Alterations to the product, purposeful or accidental
 v. Electrical current fluctuations
 vi. Corrosion due to aggressive materials not approved for your specific product
 vii. Mishandling, or misapplication of Seametrics products
 viii. Products or parts that are typically consumed during normal operation
 ix. Use of parts or supplies (other than those sold by Seametrics) which cause damage to the products, or cause abnormally frequent service calls or service problems
h. A new warranty period will be established for repaired products, or products replaced during the original warranty period.
 i. In the event that equipment is altered or repaired by the buyer without prior written approval by Seametrics, all warranties are void. Damage caused by equipment or accessories not manufactured by Seametrics may void the product’s warranty.
j. SOFTWARE: The Seller grants the user a non-exclusive license to use Seametrics’ software, according to the following limitations and conditions:
 i. The user may install the software on one or more desktop or laptop computers.
 ii. All title and intellectual rights to the software are owned by Seametrics.
 iii. No copies may be made or distributed except as described above.
 iv. The user may not modify or reverse-engineer the software.

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, WHETHER ORAL, WRITTEN, EXPRESSED, IMPLIED OR STATUTORY. NO IMPLIED WARRANTY, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, APPLIED TO THE PRODUCTS AFTER THE APPLICABLE PERIOD OF THE EXPRESS LIMITED WARRANTY STATED ABOVE, AND NO OTHER EXPRESS WARRANTY OR GUARANTEE, EXCEPT AS MENTIONED ABOVE, GIVEN BY ANY PERSON OR ENTITY WITH RESPECT TO THE PRODUCTS, SHALL BIND SEAMETRICS. **SEAMETRICS SHALL NOT BE LIABLE FOR LOSS OF REVENUES, OR PROFITS, OR INCONVENIENCES, EXPENSE FOR SUBSTITUTE EQUIPMENT OR SERVICE, STORAGE CHARGES, LOSS OF DATA, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGE CAUSED BY THE USE OR MISUSE OF, OR INABILITY TO USE THE PRODUCTS, REGARDLESS OF THE LEGAL THEORY ON WHICH THE CLAIM IS BASED, AND EVEN IF SEAMETRICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL RECOVERY OF ANY KIND AGAINST SEAMETRICS BE GREATER IN AMOUNT THAN THE PURCHASE PRICE OF THE PRODUCT SOLD BY SEAMETRICS AND CAUSING THE ALLEGED DAMAGE. WITHOUT LIMITING THE FOREGOING, YOU ASSUME ALL RISK OF LIABILITY FOR LOSS, DAMAGE, OR INJURY TO YOU AND YOUR PROPERTY AND TO OTHERS AND THEIR PROPERTY ARISING OUT OF USE OR MISUSE OF, OR INABILITY TO USE THE PRODUCTS NOT CAUSED DIRECTLY BY THE NEGLIGENCE OF SEAMETRICS.**

SOME STATES DO NOT ALLOW LIMITATIONS ON THE DURATION OF AN IMPLIED WARRANTY, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. SIMILARLY, SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATIONS OF CONSEQUENTIAL DAMAGE, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS; HOWEVER, YOU MAY ALSO HAVE OTHER RIGHTS WHICH MAY VARY FROM STATE TO STATE.