AG3000
Irrigation Magmeter
Instructions

Precision Flow Measurement
An ONICON Brand

Free battery replacement at year five with warranty registration!
TABLE OF CONTENTS

General Information
- General Information ... Page 3
- Features .. Page 3
- Specifications .. Page 4
- Dimensions ... Page 5
- Accuracy .. Page 6
- Flow Rate .. Page 6

Installation
- Straight Pipe Recommendations .. Page 7
- Full Pipe Recommendations .. Page 8
- Positioning the Meter ... Page 9
- Installing Gaskets ... Page 9
- Tightening Flange Bolts .. Page 10
- Equalization and Grounding (Metal and Plastic Pipe) Page 10

Connections
- General Cable Information .. Page 11
- Cable Gland Opening and Sealing .. Page 11
- Cable Installation .. Page 12
- Wiring Diagrams ... Page 13
- Cable Wiring Table ... Page 15

Configuration
- Sourcing Mode Output Application Page 16
- Sinking Mode Output Application ... Page 16
- Analog (4-20mA Current Loop) Output Application Page 16
- Cable Shield .. Page 17
- Pulse Output .. Page 17
- Analog (4-20mA) Output ... Page 18
- HART Output .. Page 18
- Modbus Output ... Page 18
- Digital Output ... Page 18

Operation
- Changing Flow Meter Settings - Changing Total Direction/Resetting Totalizers Page 19
- Changing Flow Meter Settings - Entering Menu System ... Page 19
- Changing Flow Meter Settings - Making Selections ... Page 19
- Changing Flow Meter Settings - Standard Menu Options.. Page 20
- Changing Flow Meter Settings - Special Submenu .. Page 20
- To Change a Passcode ... Page 21
- Power Indicators ... Page 21
- Battery Powered Units .. Page 22

Troubleshooting & Error Messages
- Problem .. Page 23
- Probable Cause ... Page 23
- Things to Try ... Page 23
- Error Messages .. Page 23

Warranty
- Seametrics Limited Warranty .. Back

Note: These instructions cover the AG3000. For details on the AG3000p or AG3000r, see the AG3000p & AG3000r Irrigation Magmeter Instructions.
The **AG3000 Series** is a spool-type electromagnetic flowmeter for use in irrigation applications in 3” to 12” pipe. With no moving parts, these meters provide unobstructed flow and are resistant to wear from debris found in ground or surface water. Little maintenance is required because there are no bearings to wear out or propellers to stop turning. Minimal straight pipe requirements allow AG3000 meters to be used in piping configurations where there is little space between the meter and an elbow.

The standard AG3000 is battery powered with an available pulse output. Both rate and total indication show on the meter mounted display. Bidirectional flow reading is standard with totals available in forward, reverse, net flow, batch forward flow, and batch reverse flow. Batch totals can be reset. Built-in data logging is available as an option for secure flow logging.

The AG3000 is also available with external DC power. With an externally powered AG3000 an additional output can be added, such as 4-20mA, HART, Modbus®, or high speed digital.

The AG3000 Series is CE certified and IP68 for burial, or applications where the meter may be under water for prolonged periods of time. All meters are provided with a security seal to protect against unauthorized access. The seal can be broken by an authorized agent to replace the battery pack or field install a power/output cable. The cable is field installed where external power is available and/or an output is needed.

Features

- Hinged cover
- User access lid
- Data logger port (right side, not shown)
- Powder-coated diecast aluminum electronics housing
- 316SS electrodes (Inside)
- Welded steel epoxy-coated flow tube (Ductile cast iron flow tube, 3” only)
- Flanges, 150 lb. ANSI pattern
- Santoprene/Polypropylene Liner (Noryl® Liner, 3” only)
- Equalization lug
- Power and Output cable port access
- Rate and total indicator with light sensor button controls
- AG3000

Seametrics • 253.872.0284
Seametrics.com
Specifications*

<table>
<thead>
<tr>
<th>Pipe Sizes</th>
<th>3", 4", 6", 8", 10", 12"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flanges</td>
<td>150 lb. ANSI Pattern</td>
</tr>
<tr>
<td>Pressure</td>
<td>150 psi (10.3 bar) line pressure</td>
</tr>
</tbody>
</table>
| **Temperature** | Operating: 10°F to 140°F (-12°C to 60°C)
Storage: -40°F to 158°F (-40°C to 70°C) |
| **Accuracy** | ±0.75% of reading on AG3000p and AG3000r (±1.0% AG3000), ±0.025% of full-scale flow from low flow cutoff to maximum flow rate of 10 m/sec |
| **Low Flow Cutoff** | 0.5% of maximum flow rate |
| **Material** | Body (3” only): Ductile cast iron, powder coated
Body (4”-12”): Welded steel, epoxy-coated
Liner (3” only): Noryl®
Liner (4”-12”): Santoprene flange/Polypropylene liner body |
| **Electronics Housing** | Powder-coated diecast aluminum |
| **O-ring** | (3” only): EPDM |
| **Display** | Type: 128x64 dot-matrix LCD
Digits: 5 Digit Rate, 8 Digit Total |
| **Units** | Rate Volume Units: Gallons/Liters/Mega Gallons/Impperial Gallons
Rate Time Units: Second/Minute/Hour/Day
Total Volume Units: Gallons/Liters/Mega Gallons/Impperial Gallons/Cubic Feet/Cubic Meters/Mega Liters/Mega Liters/Cubic Feet/Cubic Meters
Rate Volume Units: Gallons/Liters/Mega Gallons/Impperial Gallons
Rate Time Units: Second/Minute/Hour/Day
Total Volume Units: Gallons/Liters/Mega Gallons/Impperial Gallons/Cubic Feet/Cubic Meters/Mega Liters/Mega Liters/Cubic Feet/Cubic Meters |
| **Bidirectional** | Forward Total, Reverse Total, Net Total, Batch Forward Total, Batch Reverse Total (Batch totals can be reset) |
| **Power** | DC Power: 9-36 Vdc @ 250 mA max, 30 mA average
Battery Backup (Not for use as primary power): DC powered units: Two lithium 3.6V ‘D’ batteries, replaceable.
AC powered units: One 9V alkaline battery, replaceable.
AC Power (AG3000r and AG3000p only): 85-264Vac, 50/60Hz, 0.12A
Battery (AG3000 only): One lithium 7.2V ‘D’ size battery pack, replaceable. |
| **Scaled Pulse Output** | Signal: Current sinking pulse, isolated, 36 Vdc at 10 mA max
Pulse Rates: User-scalable from 0.1 to 99,999.9 volume units/pulse. Pulse width is one-half of pulse period with minimum pulse width of 2.5 ms, 200 pulses/sec max. For battery option meters, pulse width varies with frequency, 150 pulses/sec max. |
| **Options** | 4-20mA Current Loop: Isolated, passive, 24Vdc, 650 Ω maximum current loop
HART/4-20mA: HART protocol over 4-20mA line
High Speed Digital Output (AG3000 & AG3000p only): Isolated, open collector, 24 Vdc
Serial Communications: Isolated, asynchronous serial RS485 (Reconfigurable for RS232 or 3.3V CMOS), Modbus® RTU protocol (factory selectable) |
| **Cable** | Power/Output Cable: 20ft (6m) standard length polyurethane jacketed cable—for power and outputs (lengths up to 200’ available).
Remote Display Cable (AG3000r): 20ft (6m) standard length polyurethane jacketed cable—for connection between meter and remote display (lengths up to 200’ available). |
| **Conductivity** | >20 microSiemens/cm |
| **Empty Pipe Detection** | Hardware/software, conductivity-based |
| **Regulatory** | CE (EN 61326) |
| **Environmental** | NEMA 6P, IP68 (10ft (3m) depth, continuously) |

* Specifications subject to change. Please consult our website for the most current data (www.seametrics.com).

1 If forward and reverse flow data needs to be sent to another device, either the Digital or Modbus output is required.

2 Rate Time Unit is available in Day only.

Modbus is a registered trademark of Schneider Electric.
Install security seal during installation if regulations require.
AG3000 Accuracy

Flow Rate (3” - 12”)

<table>
<thead>
<tr>
<th>Pipe Size (Inches in diameter)</th>
<th>3”</th>
<th>4”</th>
<th>6”</th>
<th>8”</th>
<th>10”</th>
<th>12”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Flow Rate (Gallons/Minute)</td>
<td>723</td>
<td>1285</td>
<td>2891</td>
<td>5140</td>
<td>8031</td>
<td>11565</td>
</tr>
<tr>
<td>Cut-off (min) Flow Rate (Gallons/Minute)</td>
<td>3.62</td>
<td>6.43</td>
<td>14.46</td>
<td>25.70</td>
<td>40.15</td>
<td>57.82</td>
</tr>
<tr>
<td>Max Flow Rate (Liters/Second)</td>
<td>46</td>
<td>81</td>
<td>182</td>
<td>324</td>
<td>507</td>
<td>730</td>
</tr>
<tr>
<td>Cut-off (min) Flow Rate (Liters/Second)</td>
<td>0.23</td>
<td>0.41</td>
<td>0.91</td>
<td>1.62</td>
<td>2.54</td>
<td>3.65</td>
</tr>
<tr>
<td>Max Flow Velocity (Meters/Second)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Straight Pipe Recommendations \((X = \text{diameter}) \)

- **Reduced Pipe**
 - \(2X \) to the left
 - \(1X \) to the right

- **Two Elbows In Plane**
 - \(2X \) to the left
 - \(1X \) to the right

- **Two Elbows, Out Of Plane**
 - \(2X \) to the left
 - \(1X \) to the right
 - \(5X \) between the elbows

- **Expanded Pipe**
 - \(5X \) to the left
 - \(1X \) to the right

- **Swirling Flow: Propeller Meter**
 - \(5X \) to the left
 - \(1X \) to the right

- **Swirling Flow: Partially Open Butterfly Valve**
 - \(5X \) to the left
 - \(1X \) to the right
Full Pipe Recommendations

Recommended:
Keep pipe full at meter for accuracy

Not Ideal:
Allows air pockets to form at meter

Recommended:
Keeps pipe full at meter for accuracy

Not Ideal:
Post-valve cavitation can create air pocket

Recommended:
Allows air to bleed off

Not Ideal:
Air can be trapped

Best:
Improved accuracy results from unimpeded electrodes

Not Ideal:
If pipe contains air bubbles or sediment (may affect accuracy)
Positioning the Meter

CAUTION: These flow sensors are not recommended where installation may exceed a maximum recommended operating temperature of 130˚ F.

These meters can be installed horizontally, vertically (with upward flow), or in any radial position.

The meter must not be installed where it will be exposed to extreme levels of vibration.

Using a check valve on the upstream side of the meter, and/or an air vent (vacuum relief valve) in the same, unobstructed run of pipe as the meter, is required in any installation where the meter may be exposed to suction when the system is not in normal operation. Suction can cause damage to the liner. Liner damage caused by suction, without the use of a check valve and/or air vent, may void the warranty.

Straight Pipe Recommendations. The AG3000 requires straight pipe before and after the meter for best accuracy. However, the ability of electromagnetic meters to average the flow across the entire pipe allows for shorter straight pipe recommendations than most mechanical meters (see page 7).

Full Pipe Recommendations. To prevent false readings, this meter is designed to indicate ‘EMPTY PIPE’ if one or more electrodes is exposed. For highest accuracy, install the meter so that the pipe will be full when there is flow. If air bubbles may be present in the pipe or sludge accumulation is an issue, rotate the meter by one flange hole to position the control housing at a 45˚ angle (see diagrams on page 8).

Fittings. The AG3000 has ANSI 150 lb. drilled flanges and will mate with any other ANSI 150 lb. flanges. See table on page 10 for flange bolt tightening torque specifications.

Calibration. The AG3000 is factory-calibrated before shipping. The frequency of recalibration will depend on the needs of each application and local regulatory policies.

Chemical Injection. When the AG3000 is used in a chemical injection application, the chemical injection point must be placed downstream of the magmeter OR far enough upstream for complete mixing to occur before the fluid reaches the meter. When unmixed chemical alternates with water passing through the meter, the rapid changes in conductivity may cause sudden spikes and drops in the meter’s reading, resulting in inaccurate measurement. The magmeter will re-stabilize, however, with a steady flow of fluid of uniform conductivity.

CAUTION: In chemical injection applications, install chemical injection point downstream of magmeter, or far enough upstream to allow complete mixing of fluids.

Installing Gaskets

1. Be sure all mating surfaces are smooth and free of debris.
2. Install Seametrics provided gaskets, or equivalent, on each end of meter as shown in diagrams below. If using grounding rings, install one gasket on each side of the grounding ring.
3. **Failure to install gaskets will void warranty.**

Installation without grounding rings

Installation with grounding rings
Tightening Flange Bolts

NOTE: Mating pipe flanges must be ANSI 150# full face (FF) and/or raised face (RT).

1. Tighten flange bolts in an alternating pattern.
 • Tighten left flange bolt-1 to 20% recommended torque.
 • Tighten right flange bolt-1 to 20% of recommended torque.
 • Repeat steps a and b for each bolt in an alternating order, such as shown at right, tightening to 40%, then 60%, then 80%, and then 100%.
2. Test for leaks.
3. If needed, tighten further in 10% increments until leaking stops. **DO NOT over-tighten. Over-tightening can cause serious damage to the flow meter.**
4. Recheck after 24 hours, adjusting if needed.

SUGGESTED FLANGE BOLT TORQUE

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Liner ft-lb</th>
<th>Liner Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3”</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>4”</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>6”</td>
<td>42</td>
<td>57</td>
</tr>
<tr>
<td>8”</td>
<td>65</td>
<td>88</td>
</tr>
<tr>
<td>10”</td>
<td>73</td>
<td>99</td>
</tr>
<tr>
<td>12”</td>
<td>97</td>
<td>132</td>
</tr>
</tbody>
</table>

Equalization and Grounding

WARNING: ELECTRICAL SHOCK HAZARD
When the AG3000 is installed in a plastic piping system, or when externally powered, the piping system must be grounded to meet national and local electrical safety codes. Failure to do so can result in electrocution.

Metal Pipe Installations. To equalize the electrical potential of the fluid, the AG3000 meter, and the surrounding pipe, secure the flange plates (factory-installed on the equalization wire) to both pipe flanges at one of the bolt holes, as shown below. Be sure the lock washer fits between the pipe flange and the flange plate. For the best electrical bonding, remove rust and paint to expose clean, bare metal where the equalization flange plate lock washer contacts the pipe flange. Connection must be inspected periodically for corrosion to maintain the necessary low resistance connection.

Plastic Pipe and Electronically Noisy Installations. When the AG3000 is installed in plastic pipe or in an electrically noisy system (near a VFD etc.), grounding rings are recommended. As shown in the diagram below, the equalization wires should be solidly connected to the grounding ring tabs instead of the flange bolts as in metal piping installations. Where lightning is a threat, or in severe electrical environments, an optional connection to a nearby equipment ground or ground rod may be advisable.
AG3000 General Cable Information

In the AG3000 meter, there are a maximum of two Power/Output cables that can be installed. These cables contain the wires for DC power and for any available options (Modbus®, HART, 4-20mA, and scaled pulse). (See Sample Cable Wiring Diagrams and Cable Wiring Table.) It is up to the user to decide how to best organize the wiring for the application.

The AG3000 is available in either Battery or external DC versions.

WARNING: Improper sealing of glands or cables will invalidate any warranty.

Remove plug & o-ring. Insert cable gland/strain relief. Feed cable through cable gland.

Clamp cable with strain relief clips. Attach drain wire lug to bracket post.

CRITICAL! Torque cable gland sealing nut to 22 in-lbs.
Cable Installation (Wiring)

DC Version or Battery Only Version with external pulse output.

1. Unscrew the display lid and remove it.
2. The display assembly is held in with 3 fasteners. If those fasteners are steel screws (silver) remove them with a T-15 Torx driver and lift the display out of the meter. If the fasteners are white Nylon tabs with exposed straight slots, simply grasp the two finger recesses in the display, then pop the display up and out of the housing. This will expose the internal connectors. Be sure NOT to undo any connections to the display assembly as you remove it.
3. The DC version comes with a 15 pin screw connector. Remove this from its bag. (On the battery version, there are two 2-pin connectors already installed.)
4. Remove the plug and o-ring from the cable port(s) where you want to insert the cable(s).
5. Install cable gland(s) and insert cable end(s).
6. Strip cable jacket and conductors and install the wires into the connectors in their respective locations for your options, Modbus®, pulse, HART, etc. (See Cable Wiring Table for details.)
7. If using the 15 pin screw connector, plug it into its socket. Be sure all pins align properly and that the connector has not slipped to one side.
8. Plug the battery cable into the circuit board, as shown:
9. Secure the cables inside the internal strain relief clip and tighten the cable gland sealing nut securely (torque nut to 22 in-lbs). A loose nut could cause moisture ingress and compromise the meter head’s IP68 rating, voiding the warranty.
10. Remount the display assembly, being careful to not pinch any wires, and install the display assembly screws.
11. Reinstall the display lid, being sure to avoid cross-threading the lid.

Battery Only Version with no external pulse output

No wiring is needed.
CONNECTIONS

Wiring Diagrams

Unscrew the display lid and remove it. The display assembly is held in with 3 fasteners. If those fasteners are steel screws (silver) remove them with a T-15 Torx driver and lift the display out of the meter. If the fasteners are white Nylon tabs with exposed straight slots, simply grasp the two finger recesses in the display, then pop the display up and out of the housing. Remove the 15 pin screw connector from its bag. Install the wires through the cable glands and into the 15 pin screw connector in their respective locations. Plug the 15 pin screw connector into its socket. Be sure all pins align properly and that the connector has not slipped to one side. (C1 = power/output cable, C2 = power/output cable 2)

Battery Power with Pulse (BXX)

DC Power with Pulse (D1X/D2X)

DC Power with Pulse and 4-20mA (D1L/D2L)

DC Power with Pulse and HART/4-20mA (D1H/D2H)
Wiring Diagrams (continued)

Unscrew the display lid and remove it. The display assembly is held in with 3 fasteners. If those fasteners are steel screws (silver) remove them with a T-15 Torx driver and lift the display out of the meter. If the fasteners are white Nylon tabs with exposed straight slots, simply grasp the two finger recesses in the display, then pop the display up and out of the housing. Remove the 15 pin screw connector from its bag. Install the wires through the cable glands and into the 15 pin screw connector in their respective locations. Plug the 15 pin screw connector into its socket. ($C_1 =$ power/output cable, $C_2 =$ power/output cable 2)

DC Power with Pulse and Modbus* (D1S/D2S)

DC Power with Pulse and Digital (D1G/D2G)

Two 2-pin Connectors for AG3000 Battery Version

15 Pin Connector for AG3000 DC Versions

Note that when viewing the connectors from the front of the meter, the labels will be upside down, as shown here, with numbering going from left to right.

WARNING: BACKUP BATTERIES ARE NOT INTENDED AS A PRIMARY POWER SOURCE OF A MAINS (DC or AC) CONFIGURED METER.
Cable Wiring Table

<table>
<thead>
<tr>
<th>PIN</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>O ID</td>
<td>PWR+</td>
<td>PWR-</td>
<td>ISO</td>
<td>GND</td>
<td>DOUT</td>
<td>2-</td>
<td>DOUT</td>
<td>2+</td>
<td>DOUT</td>
<td>1-</td>
<td>DOUT</td>
<td>1+</td>
<td>B/RX</td>
<td>A/TX</td>
<td>RTS</td>
</tr>
<tr>
<td>BXX</td>
<td></td>
</tr>
<tr>
<td>D1X/D2X</td>
<td>RED</td>
<td>C1</td>
<td>BLACK</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>D1L/D2L</td>
<td>RED</td>
<td>C1</td>
<td>BLACK</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>D1S/D2S</td>
<td>RED</td>
<td>C1</td>
<td>BLACK</td>
<td>C1</td>
<td>WHITE</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1G/D2G</td>
<td>RED</td>
<td>C1</td>
<td>BLACK</td>
<td>C1</td>
<td>ORNG</td>
<td>C2</td>
<td>BLUE</td>
<td>C2</td>
<td>WHITE</td>
<td>C2</td>
<td>GREEN</td>
<td>C1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(C1 = power/output cable 1 C2 = power/output cable 2)

Option IDs

<table>
<thead>
<tr>
<th>O ID</th>
<th>POWER SOURCE / OUTPUT(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BXX</td>
<td>BATTERY POWER / PULSE SCALED</td>
</tr>
<tr>
<td>D1X/D2X</td>
<td>DC POWER / PULSE SCALED</td>
</tr>
<tr>
<td>D1L/D2L</td>
<td>DC POWER / PULSE SCALED AND 4-20mA</td>
</tr>
<tr>
<td>D1H/D2H</td>
<td>DC POWER / PULSE SCALED AND HART/4-20mA</td>
</tr>
<tr>
<td>D1S/D2S</td>
<td>DC POWER / PULSE SCALED AND MODBUS®</td>
</tr>
<tr>
<td>D1G/D2G</td>
<td>DC POWER / PULSE SCALED AND DIGITAL</td>
</tr>
</tbody>
</table>

Note that when viewing the connectors from the front of the meter, the labels will be upside down, as shown above, with numbering going from left to right.
Pulse Output Application - Sourcing Mode (Recommended for Rin < 30kΩ)

![Diagram of Pulse Output Application - Sourcing Mode](image)

Pulse Output Application - Sinking Mode (Recommended for Rin > 30kΩ)

![Diagram of Pulse Output Application - Sinking Mode](image)

Analog (4-20mA Current Loop) Output Application

![Diagram of Analog (4-20mA Current Loop) Output Application](image)

Minimum resistor value is (100 x Vs) ohms. Higher resistances may be used depending on frequency and cable length. Longer cables and high frequencies require lower resistance.

Resistor RL converts 4-20mA current to voltage for voltage input only devices.
Cable Shield. In general, the cable shield and its bare drain wire should be left unconnected at the user equipment end of the cable to minimize “ground loop” problems.

Pulse Output Configuration. A pulse output is standard on all models. Since this is an isolated output, the external equipment must include a DC power source to regenerate the pulse from the open-collector output (transistor equivalent of a contact closure). A pull-up or pull-down resistor may be needed if not included in the user equipment as shown in the diagrams. Both the power source and resistor may be supplied internally in some types of control and monitoring devices. If not, as for most PLC discrete input modules, they must be added externally at the module input terminals. The pulse output rate in volume units/pulse can be set by the user via the SETP tab on the meter’s setup menus.

Because the pulse output of an AG3000 meter is set by the user, care must be taken to assure the output pulses do not exceed the maximum frequency of the meter while also ensuring a reasonable resolution.

K-factor: Remember that SETP is expressed in units totaled per output pulse (G/P if using gallons) while K-factors are expressed in pulses per gallon (P/G). To determine K-factor from SETP, divide 1 by SETP (if SETP is expressed in gallons.) Conversely, 1 divided by the K-factor equals SETP.

AG3000 meters that were initially configured as battery powered units have a maximum output frequency of 150 Hz. Those that were initially configured as powered units have a maximum output frequency of 200 Hz.

Because all pulse outputs (SETP) are configured in (rate) units totaled per pulse, all sizes of meters can be configured with the same SETP values.

For example, if your rate is chosen as gallons per minute (GPM) the table below applies. If your rate is different, simply use your rate label in place of (GPM.) The numerical values will remain the same.

Pulse Units. The units of measure of SETP are independently selectable and are not tied to rate or total. Upon change of the SETP unit, the pulse output may take up to 10 seconds, or the duration of one pulse (whichever is longer) to take effect.

If Pulse Output is Inconsistent. The DAMP filter may need to be increased.

Pulse Width Timing. The unit and value of SETP must be chosen to keep the duration between meter pulse outputs to less than 500 seconds.

Pulse Timing in Battery Powered Units. The output pulse width in battery powered units is short and varies with pulse frequency. (See table)

Pulse Output Frequency Table

<table>
<thead>
<tr>
<th>SETP</th>
<th>Flow Rate at 1 Hz (GPM)</th>
<th>Flow Rate at 200 Hz (GPM) Powered Meters</th>
<th>Flow Rate at 150 Hz (GPM) Battery Powered Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>6</td>
<td>1200</td>
<td>900</td>
</tr>
<tr>
<td>0.2</td>
<td>12</td>
<td>2400</td>
<td>1800</td>
</tr>
<tr>
<td>0.3</td>
<td>18</td>
<td>3600</td>
<td>2700</td>
</tr>
<tr>
<td>0.4</td>
<td>24</td>
<td>4800</td>
<td>3600</td>
</tr>
<tr>
<td>0.5</td>
<td>30</td>
<td>6000</td>
<td>4500</td>
</tr>
<tr>
<td>0.6</td>
<td>36</td>
<td>7200</td>
<td>5400</td>
</tr>
<tr>
<td>0.7</td>
<td>42</td>
<td>8400</td>
<td>6300</td>
</tr>
<tr>
<td>0.8</td>
<td>48</td>
<td>9600</td>
<td>7200</td>
</tr>
<tr>
<td>0.9</td>
<td>54</td>
<td>10800</td>
<td>8100</td>
</tr>
<tr>
<td>1.0</td>
<td>60</td>
<td>12000</td>
<td>9000</td>
</tr>
</tbody>
</table>

Lower frequency output pulses (1 pulse for some particular number of gallons) can also be set.

Any output frequency can be determined by:

\[
\text{Rate (units/minute)} \div \text{SETP (units/pulse)} = \text{pulse/minute Hz} = \text{pulse/minute} \div 60 \text{ seconds / minutes}
\]

For reference/comparison only

K-factors and the equivalent SETP values for old style WMX units are shown below.

<table>
<thead>
<tr>
<th>WMX</th>
<th>4”</th>
<th>6”</th>
<th>8”</th>
<th>10”</th>
<th>12”</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Factor</td>
<td>16.36</td>
<td>6.31</td>
<td>3.34</td>
<td>2.15</td>
<td>1.53</td>
</tr>
<tr>
<td>SETP</td>
<td>0.06*</td>
<td>0.16</td>
<td>0.30</td>
<td>0.47</td>
<td>0.65</td>
</tr>
</tbody>
</table>

*Note that on the AG3000 you would need to choose a SETP value of 0.1 for the 4”.

Output Pulse Width of Battery Powered Units

<table>
<thead>
<tr>
<th>Output Pulse Frequency</th>
<th>Output Pulse Width as a Percentage of the Pulse Period (Pulse period = 1000 milliseconds/frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero to 1 Hz</td>
<td>Multiply the pulse period by 0.01 = Output Pulse Width (ms)</td>
</tr>
<tr>
<td>1 to 20 Hz</td>
<td>Multiply the pulse period by 0.05 = Output Pulse Width (ms)</td>
</tr>
<tr>
<td>20 to 100 Hz</td>
<td>Multiply the pulse period by 0.1 = Output Pulse Width (ms)</td>
</tr>
<tr>
<td>100 to 150 Hz</td>
<td>Multiply the pulse period by 0.15 = Output Pulse Width (ms)</td>
</tr>
</tbody>
</table>

Example: If frequency = 20 Hz then the pulse period = 50 milliseconds and pulse width = (0.05 x 50 milliseconds) = 2.5 ms
Analog Output (4-20mA) Configuration. *(Not available on battery only units.)* Since the meter’s analog output is isolated and passive, loop power must be supplied externally as shown on a previous page. (In addition, an external resistor R will be needed to convert the loop current to voltage for voltage-only input devices.) The meter’s loop transmitter minimum voltage drop is 6Vdc (8Vdc with HART) which, with wiring resistance and loop power supply voltage, will determine the maximum resistance for R. The flow rates corresponding to 4 and 20mA can be set by the user via the SET 4 and SET20 tabs on the meter’s setup menus.

Note: As configured by the factory, any alarm state will force 22.8mA on the loop. This can be changed to 3.2mA - see Technical Bulletin, ‘iMAG4700/AG3000: Changing the 4-20mA Alarm’.

HART Configuration. *(Not available on battery only units.)*
The HART protocol, rev.7.5, allows for a Polling address between 0 and 63. The default value in the AG3000 is 0. To change the Polling address, use AG3000 menu HPOLL to set the Polling address.

To get to this menu, move to the EXIT tab and tap the left button 4 times. This will bring up the SUBMENU page. Navigate to the HPOLL tab. Use the left button to select the Polling address.

![TAP X 4 TAP](image)

To enter SUBMENU
To select address

(See Changing Flow Meter Settings later in these instructions for details in using the menu system.)

A minimum of 250 ohms of loop resistance must be present in order for the HART modem to correctly and reliably demodulate FSK voltage. With this in mind, the maximum loop resistance* for the AG3000 HART interface cannot be exceeded in order to assure correct operation.

The AG3000 HART interface is HART compatible. All the commands have been implemented in accordance with the HART Protocol Specification published by HART Foundation. A HART Communicator can be used with the AG3000, even in the absence of DD files, by taking advantage of the Generic Online Menu capability of a Communicator. This means that a generic menu is automatically available when DD files are not present.

The following information from the AG3000 HART can be displayed on the Communicator using the generic menu:

<table>
<thead>
<tr>
<th></th>
<th>Flowrate in units selected for AG3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td></td>
</tr>
<tr>
<td>PV Loop Current</td>
<td>Loop current in mA</td>
</tr>
<tr>
<td>PV LRV</td>
<td>Lower range value of PV in units selected for AG3000</td>
</tr>
<tr>
<td>PV URV</td>
<td>Upper range of PV in units selected for AG3000</td>
</tr>
</tbody>
</table>

*4-20 mA loop has maximum loop resistance of 650ohms and requires a 24Vdc power supply.

Modbus® Serial Communication Configuration (factory configured). *(Not available on battery only units.)* These connections provide a half-duplex, isolated, RS485 serial communications port using the Modbus messaging protocol. The port is reconfigurable by internal jumper settings to full-duplex RS232 or 3.3V CMOS (See Seametrics Modbus Interface Description manual for instructions). The TXD connection is the transmitted data output from the meter and RXD is the received data input to the meter. See Seametrics’s Modbus Interface Description, LT-103393 (available at www.seametrics.com) for supported Modbus message protocol and electrical interface specifications.

Digital Output (High Frequency) Configuration. *(Not available on battery only units.)* These outputs are electrically similar to the Pulse Output described above except they are capable of output frequencies up to 10kHz. The frequency output scaling can be set by the user via the SETF tab on the meter’s setup menus. Selections are: 500Hz and 1, 2, 5 and 10 KHz at maximum flow rate.

DOUT1 Pulses in forward direction
DOUT2 Pulses in reverse direction

K-Factors for High Speed Digital Output (High Frequency)

<table>
<thead>
<tr>
<th>Size</th>
<th>SETF (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
</tr>
<tr>
<td>3"</td>
<td>41.55</td>
</tr>
<tr>
<td>4"</td>
<td>23.35</td>
</tr>
<tr>
<td>6"</td>
<td>10.38</td>
</tr>
<tr>
<td>8"</td>
<td>5.837</td>
</tr>
<tr>
<td>10"</td>
<td>3.736</td>
</tr>
<tr>
<td>12"</td>
<td>2.594</td>
</tr>
</tbody>
</table>
Changing Flow Meter Settings

Home Screen and General Navigation
The HOME Screen displays flow volume, direction of the flow total and flow RATE along with status conditions such as Empty Pipe. Two buttons below the LCD display are used to access menu screens for viewing and changing meter setup parameters.

These two buttons are light sensors which can detect when a finger is covering them and activate upon release. Only three button touch actions are needed to control navigation through the menus, settings changes and back to the home screen.

HORIZONTAL SCROLLING:
Tap right button to scroll horizontally through menu tabs or move horizontally within a tab dialog when applicable.

SELECT:
Tap left button to change a highlighted item within a tab dialog.

ENTER/EXIT:
Hold left button while tapping right button once to enter or exit a tab dialog or to navigate between the HOME and other menu screens.

Changing Total Direction/Resetting Totalizers
On the Main screen, tap to select the direction of the total display. To reset BATCH FWD or BATCH REV, select with and then tap four times.

Entering Menu System
To enter the Menu System perform the hold and tap sequence. The Passcode entry screen will display. The default passcode is 000000. If a different passcode has previously been set, use the and to enter that passcode. In either case, hold and tap again to move into the menu system. (If you enter the wrong passcode, hold and tap again to return to the previous screen. See page 21 for information on how to change a passcode.)

Making Selections
Once in the Menu System, move from tab to tab by tapping the right button. (See the next page for details on the various available tabs.)

Select the parameter. In the screen for the highlighted tab you will see the current parameter value for that tab. Tapping the right button, move to the tab for the parameter you want to change.

In this example, the first line indicates that the current unit for the TOTAL is GALLONS. The next two lines tell you what to do next.

If you would like to change the TOTAL units, just perform the hold and tap sequence to bring up a screen to change the setting.

Select a new setting. Select the new setting by scrolling through a list of selections as in the screen illustration below by tapping the left button to find a different TOTAL unit.

Accept changes. To accept any changes you have made, perform the hold and tap sequence.

When finished making changes. When you are finished making changes, move to the EXIT tab using the right button.

To return to the HOME screen, perform the hold and tap sequence.
Standard Menu Options

Note: Available options will depend on specific meter configuration. Not all options are available on all meters. Options not ordered with your meter will not appear on the meter menu.

T UNIT
View or change TOTAL volume units

R UNIT
View or change flow RATE units

SET P
View or change pulse output scaling

DAMP
View or change # of seconds for rolling average.*
(0 = 1 second, 1 = 2 seconds, etc.)

EXIT
Return to HOME SCREEN or enter SUBMENU

INFO
Meter model number, serial number, and firmware version.

COMM: Modbus® baud rate and parity. (Not available on battery only units.)

MBID: Modbus® address (Not available on battery only units.)

SAMP: Sample rate (Battery powered version only.)

HPOLL: HART Address (Not available on battery only units.)

EXIT: Return to MAIN MENU or enter next submenu.

* See DAMP Settings for Battery Units on 22.

Special SUBMENU for Further Options

The EXIT tab in the MAIN MENU has a second function. If, instead of using the hold and tap sequence to return to the HOME screen, you tap 5 five times, you will be redirected to a SUBMENU screen from which you can access several more options.

Navigation in this SUBMENU is the same as for the MAIN MENU. Whenever you wish, go to the EXIT tab in the SUBMENU and perform the hold and tap sequence to return to the MAIN MENU.

Sub-Menu

Sub-Menu - Battery Only Version
To Change a Passcode and Decimal Places

The AG3000 has a passcode system for restricting access to the menus. The AG3000 comes from the factory with the passcode set to 000000. When a user attempts to enter the menu system (see details on page 19), the passcode entry screen will be displayed.

The default passcode is 000000. If a different passcode has previously been set, then the user must enter that passcode at this time. After entering the passcode, or leaving it at 000000 if using the default passcode, the user does the tap and hold sequence to move into the menu system.

To change the passcode, you must use the THIRD MENU screen. Access the THIRD MENU screen as follows:

• Enter the main menu system, as described above.

To change the passcode, you must use the THIRD MENU screen. Access the THIRD MENU screen as follows:

• On the main menu, tab over to the EXIT tab and tap the up arrow five times. A SUBMENU screen will display.

• On the SUBMENU screen tab over to the EXIT tab and tap \[\text{A}\] five times. The THIRD MENU screen will display.

• To set the PASSCODE, hold and tap and then use the [A] and [B] to enter the new code.

• Hold and tap again to return to the THIRD MENU screen.

• Tab to EXIT, and then hold and tap to return to the SUBMENU.

To change the number of decimal places in the total

• To set the decimal point, hold and tap on SETD and then use the [B] to move the decimal point.

• Hold and tap again to return to the THIRD MENU screen.

• Tab to EXIT, and then hold and tap to return to the SUBMENU.

PLMIN

PLMIN shows the minimum degree of stability required to activate the DAMP filter. 10 would indicate that meter readings that jump more than +/- 90% would not be filtered. Zero indicates that the filters will always be applied.

TEST

TEST allows the user to initiate a fully functional, artificial flow rate for the purpose of testing other connected equipment. When TEST is applied, all features of the meter will function at the stated flow rate (in gallons per second).

For TEST to function, the meter must be filled (not EMPTY PIPE).

To enter a value into the TEST feature, navigate to the TEST tab and enter a flow rate value in the VAL screen (in gallons per second only,) then [B] to the VAL box and \[\text{A}\] to the ON screen. This will initiate the TEST feature. The next [A] would bring you to the OFF screen, but you can ‘hold and tap’ the arrows to return you to the sub menu while the feature operates.

After use, the TEST feature must be turned OFF. If the TEST feature is not turned OFF, the stated static flow rate (in gallons per second) will be shown any time the meter is full or in a flowing condition. Flow values recorded by the meter while the TEST feature is operating are permanently recorded in the displayed TOTAL. It may be useful to note that these values are only written to permanent memory every 15 minutes and cycling all power within this 15 minute time frame will return the meter to its previous total.
OPERATION

Power Indicators

A power indicator is displayed in the lower left of the main display window.

Any meter that was configured to be powered from an external power source will display a power plug icon when running on external power. If the connection to external power is lost, the meter will switch to the backup battery and the power icon will switch to a battery symbol.

All base model meters configured as battery powered (BX) units will only show the battery icon whether running on battery or external power and will always operate with all the power saving features of a battery powered unit.

OK on the battery indicator means battery voltage is above 6.4 volts.

LO on the battery indicator means the battery is low and should be replaced soon.

Battery Powered Units

To ‘wake up’ a battery powered meter, you may need to hold the up arrow for 5 seconds and release. If the meter does not wake up on the first attempt, repeat the 5 second hold.

The AG3000 meter can come configured with one 7.2V ‘D’ size replaceable battery pack. In this configuration, the only option/output is the scaled pulse output which comes standard. The scaled output for the battery powered option has a maximum pulse rate of 150 pulses/second. Be sure to set your P value such that the meter will function properly over the flow range in your application. The sample rate of the meter is user selectable through the SAMP tab in the meter’s sub-menu. Sample periods of 1/5, 1/3, 1, 3, 5, 15, 30, and 60 seconds can be selected. (A sample period of 5 seconds—5 year battery life—is the default.)

Larger sample periods will yield longer battery life but slower response time. Care must be taken to select a sample period that is suitable for your application. See the table below for the expected battery life as a function of sample period.

DAMP Settings for Battery Units

If SAMP (sample period) is set to less than one second, the DAMP value represents the number of seconds (plus one) used in the rolling average for the display. For example, if SAMP is set at three seconds and DAMP is set to four, then when the meter begins to show a flow rate, the rate displayed is the average of samples one through five (4 plus 1). Note that depending on the settings selected, it may take up to a minute for the displayed rate to take full advantage of the DAMP filter. When starting with an EMPTY PIPE it may take at least 30 seconds to register any flow.

<table>
<thead>
<tr>
<th>Sensor sample period(s) (Seconds)</th>
<th>Expected battery life*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5 (0.2)</td>
<td>7 months</td>
</tr>
<tr>
<td>1/3 (0.33)</td>
<td>1 year</td>
</tr>
<tr>
<td>1</td>
<td>2.25 years</td>
</tr>
<tr>
<td>3</td>
<td>4 years</td>
</tr>
<tr>
<td>5</td>
<td>5 years</td>
</tr>
<tr>
<td>15</td>
<td>6 years</td>
</tr>
<tr>
<td>30</td>
<td>6.25 years</td>
</tr>
<tr>
<td>60</td>
<td>6.5 years</td>
</tr>
</tbody>
</table>

*Based on 75% battery capacity at room temperature with no option cards installed.

NOTE: If a large percentage of the meter’s life will be spent below 0.5 meters/second and above cutoff, battery life will be reduced.
Troubleshooting & Error Messages

Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Causes</th>
<th>Things to try…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank Display</td>
<td>Faulty wiring from power source to meter</td>
<td>Check for incorrect wiring. Measure voltage with DMM where red and black wires connect to terminal block TB1 on back side of display. Verify correct polarity and confirm that voltage is steady and between 9Vdc and 32Vdc</td>
</tr>
<tr>
<td></td>
<td>Battery has not been plugged in</td>
<td>Plug in the battery</td>
</tr>
<tr>
<td></td>
<td>Dead battery</td>
<td>Replace battery</td>
</tr>
<tr>
<td>Flow rate reading fluctuates excessively when flow is unchanging</td>
<td>Excessively turbulent or unsteady flow due to partially closed valves or other flow obstructions</td>
<td>Eliminate or minimize causes of flow disturbances or increase meter damping</td>
</tr>
<tr>
<td></td>
<td>Pipe not full</td>
<td>Provide back pressure or other means to ensure pipe is filled</td>
</tr>
<tr>
<td></td>
<td>Pulsing flow due to combining multiple upstream flow sources</td>
<td>Move connection point further upstream</td>
</tr>
<tr>
<td></td>
<td>Insufficient mixing of upstream chemicals</td>
<td>Move chemical injection downstream from meter</td>
</tr>
<tr>
<td></td>
<td>Low fluid conductivity < 20 µS/cm</td>
<td>Replace with different type of meter</td>
</tr>
<tr>
<td></td>
<td>Noisy electrical environment</td>
<td>Improve grounding at meter and nearby potentially noisy electrical equipment. Increase distance between meter and electrical noise sources.</td>
</tr>
<tr>
<td></td>
<td>Defective or noisy AC switching power supply</td>
<td>Replace power supply</td>
</tr>
<tr>
<td>Flow Rate appears correct but pulse/frequency output is low, erratic or absent</td>
<td>Wiring incorrect</td>
<td>Compare wiring with appropriate wiring recommendations</td>
</tr>
<tr>
<td></td>
<td>External device input impedance too low</td>
<td>Use sourcing rather than sinking interface connection</td>
</tr>
<tr>
<td></td>
<td>Cable too long</td>
<td>Reduce interface pull-up resistance</td>
</tr>
<tr>
<td>Flow Rate appears correct but pulse/frequency output is erratic and/or too high</td>
<td>Electrical noise sources interfering with pulse frequency signal</td>
<td>Isolate, remove or reduce noise sources. Move meter control cable away from noise sources.</td>
</tr>
<tr>
<td></td>
<td>Wrong type of cable</td>
<td>Use only twisted pair cable and ensure both signal wires are on same twisted pair</td>
</tr>
<tr>
<td></td>
<td>Grounding problem</td>
<td>Improve or try different grounding method</td>
</tr>
</tbody>
</table>

Error Messages

Under certain conditions an error message may be displayed.

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
<th>Notes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>Initialization is occurring during power up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMPTY PIPE</td>
<td>Fluid is not detected between the sensing electrodes.</td>
<td>Loop output = 22.8mA</td>
<td></td>
</tr>
<tr>
<td>LO in battery icon</td>
<td>Battery is getting low, replace soon. Meter still functions.</td>
<td>Above 6.4V, OK appears in icon</td>
<td></td>
</tr>
<tr>
<td>BATT END</td>
<td>Battery is very low (approx. 6.1V). Totalizer stops updating.</td>
<td>Loop output = 4mA</td>
<td></td>
</tr>
<tr>
<td>LOW VOLT</td>
<td>Incoming external power is very low and backup battery is dead or not connected</td>
<td>Loop output = 4mA</td>
<td></td>
</tr>
<tr>
<td>COIL FAIL</td>
<td>Coil current too high or too low (short or open).</td>
<td>Loop output = 22.8mA</td>
<td></td>
</tr>
<tr>
<td>COMM FAIL</td>
<td>Communication between transmitter and sensor board fails.</td>
<td>Loop output = 22.8mA</td>
<td></td>
</tr>
<tr>
<td>OVER RANGE</td>
<td>Rate exceeds number of digits that can be displayed. Adjust units.</td>
<td>Loop output = 4mA</td>
<td></td>
</tr>
</tbody>
</table>
The limited warranty set forth below is given by Seametrics, with respect to Seametrics AG3000 product purchased in the United States of America and applies to the irrigation market only.

Seametrics warrants that products manufactured by Seametrics, when delivered to you in new condition in their original containers and properly installed, shall be free from defects in material and workmanship. Seametrics AG3000 is warranted against defects for a period of five (5) years from date of shipment.

Seametrics’ obligation under this warranty shall be limited to replacing or repairing the part or parts, or, at Seametrics’ option, the products, which prove defective in material or workmanship. The following are the terms of Seametrics’ limited warranty:

a. Buyer must give Seametrics prompt notice of any defect or failure and satisfactory proof thereof.

b. Any defective part or parts must be returned to Seametrics’ factory or to an authorized service center for inspection.

c. Buyer will prepay all freight charges to return any products to Seametrics’ factory, or another repair facility. as designated by Seametrics.

d. Defective products, or parts thereof, which are returned to Seametrics and proved to be defective upon inspection, will be repaired to factory specifications.

e. Seametrics will deliver repaired products or replacements for defective products to the buyer (ground freight prepaid) to the destination provided in the original order.

f. Products returned to Seametrics for which Seametrics provides replacement under this warranty shall become the property of Seametrics.

g. This limited warranty covers all defects encountered in normal use of Seametrics products, and does not apply to the following cases:

i. Loss of or damage to Seametrics product due to abuse, mishandling, or improper packaging by buyer

ii. Failure to follow operating, maintenance, or environmental instructions prescribed in Seametrics’ instruction manual

iii. Products not used for their intended purpose

iv. Alterations to the product, purposeful or accidental

v. Electrical current fluctuations

vi. Corrosion due to aggressive materials not approved for your specific product

vii. Mishandling, or misapplication of Seametrics products

viii. Products or parts that are typically consumed during normal operation

ix. Use of parts or supplies (other than those sold by Seametrics) which cause damage to the products, or cause abnormally frequent service calls or service problems

h. A new warranty period shall not be established for repaired or replaced material, products, or supplied. Such items shall remain under warranty only for the remainder of the warranty period on the original materials, products, or supplies.

i. In the event that equipment is altered or repaired by the buyer without prior written approval by Seametrics, all warranties are void. Damage caused by equipment or accessories not manufactured by Seametrics may void the product’s warranty.

j. SOFTWARE: The Seller grants the user a non-exclusive license to use Seametrics’ software, according to the following limitations and conditions:

i. The user may install the software on one or more desktop or laptop computers.

ii. All title and intellectual rights to the software are owned by Seametrics.

iii. No copies may be made or distributed except as described above.

iv. The user may not modify or reverse-engineer the software.

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, WHETHER ORAL, WRITTEN, EXPRESSED, IMPLIED OR STATUTORY. NO IMPLIED WARRANTY, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, APPLIED TO THE PRODUCTS AFTER THE APPLICABLE PERIOD OF THE EXPRESS LIMITED WARRANTY STATED ABOVE, AND NO OTHER EXPRESS WARRANTY OR GUARANTY, EXCEPT AS MENTIONED ABOVE, GIVEN BY ANY PERSON OR ENTITY WITH RESPECT TO THE PRODUCTS, SHALL BIND SEAMETRICS. SEAMETRICS SHALL NOT BE LIABLE FOR LOSS OF REVENUES, OR PROFITS, OR INCONVENIENCES, EXCHANGE FOR SUBSTITUTE EQUIPMENT OR SERVICE, STORAGE CHARGES, LOSS OF DATA, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGE CAUSED BY THE USE OR MISUSE OF, OR INABILITY TO USE THE PRODUCTS, REGARDLESS OF THE LEGAL THEORY ON WHICH THE CLAIM IS BASED, AND EVEN IF SEAMETRICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL RECOVERY OF ANY KIND AGAINST SEAMETRICS BE GREATER IN AMOUNT THAN THE PURCHASE PRICE OF THE PRODUCT SOLD BY SEAMETRICS AND CAUSING THE ALLEGED DAMAGE. WITHOUT LIMITING THE FOREGOING, YOU ASSUME ALL RISK OF LIABILITY FOR LOSS, DAMAGE, OR INJURY TO YOU AND YOUR PROPERTY AND TO OTHERS AND THEIR PROPERTY ARISING OUT OF USE OR MISUSE OF, OR INABILITY TO USE THE PRODUCTS NOT CAUSED DIRECTLY BY THE NEGLIGENCE OF SEAMETRICS.

SOME STATES DO NOT ALLOW LIMITATIONS ON THE DURATION OF AN IMPLIED WARRANTY, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. SIMILARLY, SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATIONS OF CONSEQUENTIAL DAMAGE, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, HOWEVER, YOU MAY ALSO HAVE OTHER RIGHTS WHICH MAY VARY FROM STATE TO STATE.