EX100/200-Series

INSERTION MAGNETIC FLOW METER INSTRUCTIONS

EX110
EX210

EX150
EX250

ISO 9001:2008 CERTIFIED COMPANY
TABLE OF CONTENTS

General Information
General Information, Features, Specifications.. Page 1

Installation
Piping, Distorted Flows, Immersion, Positioning the Meter ... Page 2
Fitting Installation, Meter Installation ... Page 3
Proper Depth Setting ... Page 4
Dimension “C”, Pipe Wall Thickness... Page 5
Straight Pipe Recommendations .. Page 6
Full Pipe Recommendations... Page 7

Electrical Connections
General Electrical Guidelines, Power, Forward (and Reverse) Flow Output, Grounding Guidelines, Grounding Diagram... Page 8

Connections Diagrams
Counter or PLC, A055 4-20 mA Output, FT520 Controller .. Page 9
FT420 Display and Proportional Feed, FT420 & 4-20 mA Output, Dual FT420 Displays Page 10
DL76 Data Logger, FT420/DL76 ... Page 11

Operation & Maintenance

Troubleshooting
Problems, Probable Causes and Things to Try .. Page 13

TABLES, DIAGRAMS & CHARTS

Features.. Page 1
Distorted Flows, Positioning the Meter ... Page 2
Meter Installation, Sensor Removal .. Page 3
Proper Depth Setting .. Page 4
Dimension “C”, Pipe Wall Thickness.. Page 5
Straight Pipe Recommendations... Page 6
Full Pipe Recommendations.. Page 7
Grounding Diagram.. Page 8
Connection Diagrams: Counter or PLC, A055 4-20 mA Output, FT520 Controller Page 9
Connection Diagrams: FT420 Display and Proportional Feed, FT420 & 4-20 mA Output, Dual FT420 Displays.. Page 10
Connection Diagrams: DL76 Data Logger, FT420/DL76 .. Page 11
Zero Adjustment, Flow Rates in Gallons Per Minute.. Page 12
Troubleshooting Problems, Probable Causes and Things to Try .. Page 13
The complete lack of moving parts of the **EX100/200-Series** insertion flow sensor is the source of its reliability. Brass and stainless steel models withstand a variety of temperature, pressure, and chemical conditions. The EX-Series has no rotor to stop turning in dirty water and there are no bearings to wear out.

A rapidly reversing magnetic field is produced in the lower housing. As the fluid moves through this field, a voltage is generated that is measured and translated into a frequency signal proportional to flow rate. This square wave signal can be sent directly to a PLC or other control or can be converted using any of the Seametrics family of indicators and converters.

A modular system of electronics can be attached directly to the flow sensor or remotely mounted. The Seametrics FT420 provides full indication of rate and total, plus 4-20 mA output. The A055 provides blind 4-20 mA output, and the DL76 is a battery-powered data logger.

The adapter of the EX mates with a standard female NPT fitting, and can be directly threaded into ordinary saddles or threaded weld fittings. The EX150 and 250 include an isolation valve, allowing hot-tap installation, or installation and removal under pressure; a bronze ball valve is standard, with a 316 stainless steel valve option if needed.

Reverse flow output and immersibility are optional.

FEATURES

- Cable Strain Relief
- Lower Housing
- Brass or 316 Stainless Shaft
- Compression Nut
- Adapter mates with 1 1/2” FNPT threaded fitting
- Sensor Housing
- Electrodes and Cap

SPECIFICATIONS*

<table>
<thead>
<tr>
<th>Pipe Sizes</th>
<th>3” to 48” (up to 72” optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Shaft/Fitting</td>
</tr>
<tr>
<td>Electrodes</td>
<td>Hastelloy</td>
</tr>
<tr>
<td>Electrode Cap</td>
<td>PVDF</td>
</tr>
<tr>
<td>Housing</td>
<td>Cast powder-coated aluminum</td>
</tr>
<tr>
<td>Valve Assembly</td>
<td>Bronze (stainless optional) with bronze ball valve</td>
</tr>
<tr>
<td>O-Ring</td>
<td>EPDM</td>
</tr>
<tr>
<td>Power</td>
<td>Full Power</td>
</tr>
<tr>
<td></td>
<td>12-25 Vdc, 250 mA</td>
</tr>
<tr>
<td>Low Power</td>
<td>12-25 Vdc, 40 mA average with 250 mA peaks</td>
</tr>
<tr>
<td>Flow Range</td>
<td>0.28 to 20 ft/sec (0.08 - 6.09 m/sec)</td>
</tr>
<tr>
<td>Fitting Size Required</td>
<td>EX110/210</td>
</tr>
<tr>
<td>1-1/2” FNPT</td>
<td>2” FNPT</td>
</tr>
<tr>
<td>Temperature</td>
<td>Ambient</td>
</tr>
<tr>
<td></td>
<td>0˚ to 160˚ F (-17˚ to 72˚ C)</td>
</tr>
<tr>
<td>Fluid</td>
<td>32˚ to 200˚ F (0˚ to 93˚ C)</td>
</tr>
<tr>
<td>Pressure</td>
<td>200 psi (13.8 bar)</td>
</tr>
<tr>
<td>Minimum Conductivity</td>
<td>20 microSiemens/cm</td>
</tr>
<tr>
<td>Calibration Accuracy</td>
<td>+/- 1% of full scale</td>
</tr>
<tr>
<td>Output</td>
<td>Square wave pulse, opto isolated, 550 Hz @ 20 ft/sec</td>
</tr>
<tr>
<td></td>
<td>6 mA max, 30 Vdc forward flow standard, reverse flow optional</td>
</tr>
<tr>
<td>Empty Pipe Detection</td>
<td>Software, defaults to zero flow</td>
</tr>
</tbody>
</table>

*Specifications subject to change • Please consult our website for current data (www.seametrics.com).
Piping. For best results, the EX sensor should be installed with at least ten diameters of straight pipe upstream and five downstream. Certain extreme situations such as partially-opened valves are particularly difficult and may require more straight diameters upstream (see page 6 for straight pipe recommendations).

DISTORTED FLOWS

Immersion. The 100/200-Series sensors are not designed for underwater operation. Even occasional immersion can cause damage. If occasional immersion, such as when a vault floods, then the -40 option, (immersion) is recommended.

Chemical Injection or Fertigation. When any magmeter, by any manufacturer, is used in a chemical injection application (including fertigation), the chemical line must be placed downstream of the magmeter OR far enough upstream for complete mixing to occur before the fluid reaches the meter. When unmixed chemical or fertilizer alternates with water passing through the meter, the rapid changes in conductivity may cause sudden spikes and drops in the meter’s reading, resulting in inaccurate measurement. The magmeter will restabilize, however, with a steady flow of fluid of uniform conductivity.

Caution: These flow sensors are not recommended for installation downstream of a boiler feedwater pump where installation fault may expose the flow sensor to boiler pressure and temperature. Maximum recommended temperature is 200°F.

Caution: In chemical injection or fertigation applications, install chemical line downstream of magmeter, or far enough upstream to allow complete mixing of fluids before the meter.

POSITIONING THE METER

Vertical flow in upward direction is the preferred installation orientation, since it improves low-flow performance and avoids problems with trapped air and sediment. Bottom, top, and vertical pipe installations are all acceptable if required by the piping layout.
EX110/210 INSTALLATION

Fitting Installation. EX110/210 adapters mate with a 1-1/2" female NPT pipe thread adapter fitting. Any fitting that provides the matching NPT female thread may be used. Installation procedure compensates for fitting height differences. Cut a minimum 1-3/4" hole in the pipe. If possible, measure the wall thickness and write it down for use in depth setting. Then install the threaded fitting (saddle, weldolet, etc.) on the pipe.

Meter Installation. Loosen the compression nut so that the adapter slides freely. Pull the meter fully upward and finger-tighten the compression nut. Using a thread sealant, install the adapter in the pipe fitting. Do not overtighten. Now loosen the compression nut, lower the meter to the appropriate depth setting (see diagram and instructions that follow). Be sure flow is in the direction of the arrow on the housing. Tighten compression nut fully.

EX150/250 INSTALLATION

‘Hot tap’ EX meters are designed so they can be installed and serviced without depressurizing the pipe.

Fitting Installation. The EX150 and 250 adapters mate with a 2" FNPT threaded fitting for compatibility with the 2" isolation valve. Any fitting that provides matching NPT female thread may be used. The installation procedure compensates for differences in fitting height.

If initial installation is performed on an unpressurized pipe, cut a minimum 1-3/4" hole in the pipe. If possible, measure the wall thickness and write it down for use in depth setting. Then install the threaded fitting (saddle, weldolet, etc.) on the pipe.

If it is necessary to do the initial installation under pressure, any standard hot tap drilling machine with 2" NPT adapter, such as a Transmate or a Mueller, can be used. Ordinarily, it is not necessary to use an installation tool, due to the small diameter tube the meter can be installed by hand at all but the highest pressures.

Meter Installation. Remove the sensor unit from the valve assembly. Using a thread sealant, install the valve assembly on the pipe fitting. If the initial installation is a pressure (“hot”) tap, remove the 1-1/2" x 2" adapter bushing at the back of the valve. Thread the tapping machine on, open the valve, and tap using a minimum of 1-3/4" or maximum 1-7/8" cutter. After retracting the machine and closing the valve, reinstall the flow sensor. When the sensor is secure, open the valve and adjust depth setting (see diagram and instructions that follow). Be sure flow is in the direction of the arrow on the housing. Tighten locking collar and compression nut fully.
PROPER DEPTH SETTING

Depth Setting. It is important for accuracy that the sensor be inserted to the correct depth into the pipe.

1. In Table 1, find Dimension C for your sensor model and pipe size. Subtract wall thickness of your pipe (Table 2) to find Dimension D.

 NOTE: When you calculate your K-factor as described on page 12, Dimension D will be given also.

2. Measuring from the outside of the pipe to the joint in the housing, as shown in the diagram, adjust the sensor to Dimension D and hand-tighten compression nut.

3. Align the conduit housing with the centerline of the pipe, as shown. Be sure the arrow on the housing points in the direction of flow.

4. Check Dimension D one more time.

5. Tighten the compression nut fully.

Caution! Never attempt to remove a flow sensor when there is pressure in the pipe unless it is specifically designed for hot tap installation and removal. Loosen the compression nut slowly to release any trapped pressure. If fluid sprays out when removing the sensor, stop turning and depressurize the pipe. Failure to do so could result in the sensor being thrown from the pipe, resulting in damage or serious injury.
TABLE 1: DIMENSION “C”

<table>
<thead>
<tr>
<th>NOMINAL PIPE SIZE</th>
<th>3”</th>
<th>4”</th>
<th>6”</th>
<th>8”</th>
<th>10”</th>
<th>12”</th>
<th>14”</th>
<th>16”</th>
<th>18”</th>
<th>20”</th>
<th>24”</th>
<th>30”</th>
<th>36”</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX150</td>
<td>17.04</td>
<td>16.93</td>
<td>16.69</td>
<td>16.46</td>
<td>16.22</td>
<td>15.99</td>
<td>15.75</td>
<td>15.52</td>
<td>15.28</td>
<td>15.05</td>
<td>14.58</td>
<td>13.87</td>
<td>13.17</td>
</tr>
</tbody>
</table>

TABLE 2: PIPE WALL THICKNESS

<table>
<thead>
<tr>
<th>NOMINAL PIPE SIZE</th>
<th>3”</th>
<th>4”</th>
<th>6”</th>
<th>8”</th>
<th>10”</th>
<th>12”</th>
<th>14”</th>
<th>16”</th>
<th>18”</th>
<th>20”</th>
<th>24”</th>
<th>30”</th>
<th>36”</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC/Steel Sch. 40</td>
<td>0.216</td>
<td>0.237</td>
<td>0.280</td>
<td>0.322</td>
<td>0.365</td>
<td>0.406</td>
<td>0.438</td>
<td>0.500</td>
<td>0.562</td>
<td>0.593</td>
<td>0.687</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC/Steel Sch. 80</td>
<td>0.300</td>
<td>0.337</td>
<td>0.432</td>
<td>0.500</td>
<td>0.593</td>
<td>0.687</td>
<td>0.750</td>
<td>0.843</td>
<td>0.937</td>
<td>1.031</td>
<td>1.218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stainless Steel (10S)</td>
<td>0.120</td>
<td>0.120</td>
<td>0.134</td>
<td>0.148</td>
<td>0.165</td>
<td>0.180</td>
<td>0.188</td>
<td>0.188</td>
<td>0.218</td>
<td>0.250</td>
<td>0.312</td>
<td>0.312</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel (40S)</td>
<td>0.216</td>
<td>0.237</td>
<td>0.280</td>
<td>0.322</td>
<td>0.365</td>
<td>0.375</td>
<td>0.375</td>
<td>0.375</td>
<td>0.375</td>
<td>0.375</td>
<td>0.375</td>
<td>0.375</td>
<td></td>
</tr>
<tr>
<td>Copper Tubing (Type L)</td>
<td>0.090</td>
<td>0.110</td>
<td>0.140</td>
<td>0.200</td>
<td>0.250</td>
<td>0.280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper Tubing (Type K)</td>
<td>0.109</td>
<td>0.134</td>
<td>0.192</td>
<td>0.271</td>
<td>0.338</td>
<td>0.405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brass Pipe</td>
<td>0.219</td>
<td>0.250</td>
<td>0.250</td>
<td>0.312</td>
<td>0.365</td>
<td>0.375</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duct. Iron (Class 52)</td>
<td>0.280</td>
<td>0.290</td>
<td>0.310</td>
<td>0.330</td>
<td>0.350</td>
<td>0.370</td>
<td>0.390</td>
<td>0.400</td>
<td>0.410</td>
<td>0.420</td>
<td>0.440</td>
<td>0.470</td>
<td>0.530</td>
</tr>
</tbody>
</table>
STRAIGHT PIPE RECOMMENDATIONS

(X = diameter)

Reduced Pipe

Two Elbows In Plane

Two Elbows, Out Of Plane

Expanded Pipe

Spiral Flow

Propeller Meter

Swirling Flow

Partially Open Butterfly Valve
FULL PIPE RECOMMENDATIONS

Possible Problem

Better Installation

Allows air pockets to form at sensor

Ensures full pipe

Post-valve cavitation can create air pocket

Keeps pipe full at sensor

Air can be trapped

Allows air to bleed off

Caution: These flow sensors are not recommended for installation downstream of a boiler feedwater pump where installation fault may expose the flow sensor to boiler pressure and temperature. Maximum recommended temperature is 200°F.
General Electrical Guidelines:

- Whenever possible avoid running control cables in the same conduit with or bundled with AC power.
- Using shielded cable, be sure to connect shield to ground at power supply end of the cable. Do not connect other end of shield.
- Avoid routing flow sensor cables in close proximity to a variable frequency drive.
- Recommended power and output wiring is shielded twisted pair 18-22 AWG control cable.
- Recommended voltage is 12-24 Vdc. Note that unregulated power supplies can vary from nameplate voltage by a considerable amount, especially with AC line voltage fluctuation. Therefore 24V power supplies must be regulated.

See the Connections diagrams on the following pages for the appropriate terminals.

Power: A 12 - 24 Vdc power supply capable of at least 250 mA current output is needed.

Output: The standard output is pulses with flow in the forward direction (Reverse flow output is optional [-15]). Electrically it is an open collector opto isolated switch. The output is not internally powered.

Note: This output is limited to 6 mA at 30 Vdc maximum.

Grounding Guidelines:

For best results, use a good quality earth ground, such as metallic water piping or a driven ground, to ensure a good connection to earth ground and good noise suppression.

If the flow sensor is installed in metallic piping, for optimum connection clamp wire to the piping a short distance to one side of the flow sensor using an electrical grounding clamp. Connect the wire to the earth ground and to one of the housing screws.

For Non-Metallic Pipe: Connect one to the housing screws by wire to a good earth ground, such as metallic water piping or a rod driven into the ground.

EX meters are usually unaffected by moderate levels of electrical noise. In some applications performance may be improved by taking the following steps:

- Use shielded twisted pair cable (Belden 8723 or equivalent above ground or Alpha 35482 or equivalent burial).
- Clamp a ferrite bead (Steward 28A2029-OAO or equivalent) on meter signal/power wire within 3/4” of the meter strain relief (tape or tie wrap in place if necessary). See diagram below.
- IMPORTANT - Connect the cable shield ground wire to ground, ONLY at power supply end of cable.

Caution: The EX100/200 has a strong start and run current. When using solar panels and VRSLA batteries as a power source, use caution to insure the EX-series sensor has the -50 Low-power Option and that all Seametrics products on the power circuit receive sufficient voltage and current under all conditions. Failure to do so will lead to unreliable operation and possible damage to the unit/s. Please reference the technical bulletin, ‘Solar and Battery-Power Guidelines’ available on our website: www.seametrics.com
CONNECTIONS DIAGRAMS

COUNTER OR PLC

+ 12 - 24 Vdc
Power 12 - 24 Vdc
Forward Output
(Max. 6 mA, 30 Vdc)
Reverse Output
(Max. 6 mA 30 Vdc)
EX-SERIES

*See Dual FT420 Diagram for an example of bidirectional connections.

AO55 4-20 mA OUTPUT

+ 24 Vdc Power
EX-SERIES

Sensor
Frequency

4-20 mA
A055

*See Dual FT420 Diagram for an example of bidirectional connections.

FT520 CONTROLLER

Pulse Out
24 Vdc Power
FT520

Ex-Series

*See Dual FT420 Diagram for an example of bidirectional connections.
FT420 DISPLAY AND PROPORTIONAL FEED

EX-SERIES

*See Dual FT420 Diagram for an example of bidirectional connections.

FT420 DISPLAY AND 4-20 mA OUTPUT

EX SERIES

*See Dual FT420 Diagram for an example of bidirectional connections.

DUAL FT420 DISPLAYS
(Example of Bidirectional Connection)
CONNECTIONS DIAGRAMS

DL76 DATA LOGGER

See Dual FT420 Diagram for an example of bidirectional connections.

![Diagram of DL76 Data Logger](image)

FT420/DL76

See Dual FT420 Diagram for an example of bidirectional connections.

![Diagram of FT420/DL76 Connections](image)
OPERATION & MAINTENANCE

Zero Adjustment. When the EX100/200-Series meter is powered up and there is no flow, there should be no output pulses (or, if connected to the FT420, flow rate should read “0”). If there are pulses, it may be necessary to adjust the flow meter under no-flow conditions after it has been installed. **This should only be done if the indicated flow is low, near the lower cutoff.**

To perform the adjustment, after determining that there is a full pipe with no flow, short between the two pins marked “Zero Adjust”. A red LED light will come on for approximately 50 seconds and then go out. The zero adjustment is completed.

Minimum Flow. As with any other flow sensor, there is a rate below which the EX100-Series sensor cannot read. Check the table below for the minimum flow rate detectable by the sensor for a given pipe size.

Presence of Flow Indication. To assist in troubleshooting, the “Status LED” has two blinking modes in normal operation. When there is no flow detectable by the meter (below minimum threshold) the LED blinks every 8.0 seconds. When there is detectable flow, the same indicator blinks every 3.0 seconds (Pulses are being output when indicator is blinking every 3 seconds).

Filtering. The software of the EX100/200-Series filters out electrical noise and averages sudden variations in the flow to smooth the output. It takes a matter of seconds for the flow sensor to get up to full output when it is powered up or when flow begins.

Electrode Coating. Grease or other adhering, non-conductive materials can stop flow detection if the electrodes become heavily coated. To clean the electrodes, remove the sensor from the pipe and gently scrub the electrodes (three silver bumps) on the reading face of the flow sensor. A mild soap (dishwashing liquid for example) can be used to aid the cleaning process.

Calibration (“K-Factor”). In order to properly process pulses from the flow sensor, a number must be entered into the control to which the sensor is connected. This number, called the K-factor, is the number of pulses the sensor puts out per unit of fluid passing through the pipe. It is normally provided for Seametrics sensors in pulses per gallon, and can be ascertained by using the “K-Factor Calculator” on the Seametrics website. These numbers are based on extensive testing, which has shown close agreement among different EX sensors in the same installation. Typically, most K-factor error can be attributed to installation variables, such as depth setting and fitting configuration.

Using the K-Factor Calculator:

1) Go to the Seametrics webpage, EX K-factor calculator (http://www.seametrics.com/node/223)*

2) Select your meter

3) Choose units

4) Input external pipe diameter (measure) and wall thickness (measure, or look-up in Table 2 on page 5 of this manual)

5) Press Calculate to determine your K-factor (**NOTE:** Dimension D is also calculated.)

6) Enter your K-factor into your controller

*For pipe sizes larger than 50”, please consult factory.

FLOW RATES (IN GALLONS PER MINUTE)

<table>
<thead>
<tr>
<th>Feet Per Second</th>
<th>NOMINAL PIPE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min 0.28</td>
<td>3" 4" 6" 8" 10" 12" 14" 16" 18" 20" 24" 30" 36" 48"</td>
</tr>
<tr>
<td></td>
<td>6 11 25 44 69 99 134 175 222 274 395 617 888 1580</td>
</tr>
<tr>
<td>Max 20.0</td>
<td>440 783 1,762 3,133 4,895 7,050 9,596 12,533 15,863 19,584 28,200 44,064 63,452 112,804</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>No pulse output</td>
<td>Unit not grounded</td>
</tr>
<tr>
<td></td>
<td>Below minimum flow cutoff</td>
</tr>
<tr>
<td></td>
<td>Flow reversed</td>
</tr>
<tr>
<td></td>
<td>Output connections reversed</td>
</tr>
<tr>
<td></td>
<td>Pipe not full</td>
</tr>
<tr>
<td></td>
<td>Excessive electrical noise</td>
</tr>
<tr>
<td></td>
<td>No power</td>
</tr>
<tr>
<td></td>
<td>Power reversed</td>
</tr>
<tr>
<td></td>
<td>Fluid conductivity <20 microSiemens/cm</td>
</tr>
<tr>
<td>Output pulses incorrect</td>
<td>Missing or incorrect ground wire</td>
</tr>
<tr>
<td></td>
<td>Incorrect depth setting</td>
</tr>
<tr>
<td></td>
<td>Fluid conductivity <20 microSiemens/cm</td>
</tr>
<tr>
<td></td>
<td>Empty pipe</td>
</tr>
<tr>
<td></td>
<td>Not enough straight pipe</td>
</tr>
<tr>
<td></td>
<td>Excessive electrical noise</td>
</tr>
<tr>
<td>Jumpy reading</td>
<td>Rapidly changing conductivity (in chemical injection or fertigation applications)</td>
</tr>
</tbody>
</table>